KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.10
/
pp.1712-1732
/
2011
Cloud provides dynamically scalable virtualized computing resources as a service over the Internet. To achieve higher resource utilization over virtualization technology, an optimized strategy that deploys virtual machines on physical machines is needed. That is, the total number of active physical host nodes should be dynamically changed to correspond to their resource usage rate, thereby maintaining optimum utilization of physical machines. In this paper, we propose a pattern-based prediction model for resource provisioning which facilitates best possible resource preparation by analyzing the resource utilization and deriving resource usage patterns. The focus of our work is on predicting future resource requests by optimized dynamic resource management strategy that is applied to a virtualized data center in a Cloud computing environment. To this end, we build a prediction model that is based on user request patterns and make a prediction of system behavior for the near future. As a result, this model can save time for predicting the needed resource amount and reduce the possibility of resource overuse. In addition, we studied the performance of our proposed model comparing with conventional resource provisioning models under various Cloud execution conditions. The experimental results showed that our pattern-based prediction model gives significant benefits over conventional models.
Among the resource provisioning mechanisms for the hose based Virtual Private Network (VPN) Quality of Service (QoS ), VPN-specific state provisioning allows the service provider to obtain highest resource multiplexing gains. However, dynamic and automatic resource reservation for the VPN-specific state provisioning is difficult due to the lack of appropriate resource reservation protocol. Furthermore, users of a VPN may experience unfair usage of resources among themselves since the reserved resources of a VPN are shared by the VPN users in a similar way that the traditional LAN bandwidth is shared by the attached hosts. In this paper, we propose a resource reservation protocol and a traffic service mechanism, which not only enable dynamic and automatic resource reservation according to the VPN-specific state provisioning algorithm, but also enforce the fair usage of reserved resources among the users of a VPN in case of congestion.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.310-328
/
2022
Internet of things (IoT) has emerged as the most popular technique that facilitates enhancing humans' quality of life. However, most time sensitive IoT applications require quick response time. So, processing these IoT applications in cloud servers may not be effective. Therefore, fog computing has emerged as a promising solution that addresses the problem of managing large data bandwidth requirements of devices and quick response time. This technology has resulted in processing a large amount of data near the data source compared to the cloud. However, efficient management of computing resources involving balancing workload, allocating resources, provisioning resources, and scheduling tasks is one primary consideration for effective computing-based solutions, specifically for time-sensitive applications. This paper provides a comprehensive review of the source management strategies considering resource limitations, heterogeneity, unpredicted traffic in the fog computing environment. It presents recent developments in the resource management field of the fog computing environment. It also presents significant management issues such as resource allocation, resource provisioning, resource scheduling, task offloading, etc. Related studies are compared indifferent mentions to provide promising directions of future research by fellow researchers in the field.
Journal of the Korea Society of Computer and Information
/
v.19
no.2
/
pp.1-10
/
2014
Cloud computing provides flexible and efficient mass data analysis platform. In this paper, we define a new resource provisioning architecture in the public cloud, named PCIA. In addition, we provide a service model of PCIA and its new naming scheme. Our model selects the proper number of physical or virtual resources based on the requirements of clients. By the analysis of performance variation in the PCIA, we evaluate the relationship between performance variation and resource provisioning, and we present key standards for cloud system constructions, which can be an important resource provisioning criteria for both cloud service providers and clients.
Kim, Byungsang;Youn, Chan-Hyun;Park, Yong-Sung;Lee, Yonggyu;Choi, Wan
Journal of Information Processing Systems
/
v.8
no.4
/
pp.555-566
/
2012
The cloud environment makes it possible to analyze large data sets in a scalable computing infrastructure. In the bioinformatics field, the applications are composed of the complex workflow tasks, which require huge data storage as well as a computing-intensive parallel workload. Many approaches have been introduced in distributed solutions. However, they focus on static resource provisioning with a batch-processing scheme in a local computing farm and data storage. In the case of a large-scale workflow system, it is inevitable and valuable to outsource the entire or a part of their tasks to public clouds for reducing resource costs. The problems, however, occurred at the transfer time for huge dataset as well as there being an unbalanced completion time of different problem sizes. In this paper, we propose an adaptive resource-provisioning scheme that includes run-time data distribution and collection services for hiding the data transfer time. The proposed adaptive resource-provisioning scheme optimizes the allocation ratio of computing elements to the different datasets in order to minimize the total makespan under resource constraints. We conducted the experiments with a well-known sequence alignment algorithm and the results showed that the proposed scheme is efficient for the cloud environment.
Cloud computing is one of the distributed computing environments and utilizes several computing resources. Cloud environment uses a virtual machine to process a requested job. To balance a workload and process a job rapidly, cloud environment uses a provisioning technique and assigns a task with a status of virtual machine. However, a scheduling method for cloud computing requires a definition of virtual machine availabilities, which have an obscure meaning. In this paper, we propose Fuzzy logic driven Virtual machine Provisioning scheduling using Resource Evaluation(FVPRE). FVPRE analyzes a state of every virtual machine and actualizes a value of resource availability. Thus FVPRE provides an efficient provisioning scheduling with a precise evaluation of resource availability. FVPRE shows a high throughput and utilization for job processing on cloud environments.
Sun, Guolin;Clement, Addo Prince;Boateng, Gordon Owusu;Jiang, Wei
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.12
/
pp.5701-5722
/
2018
The continuous increase in the cost of energy production and concerns for environmental sustainability are leading research communities, governments and industries to amass efforts to reduce energy consumption and global $CO_2$ footprint. Players in the information and communication industry are keen on reducing the operational expenditures (OpEx) and maintaining the profitability of cellular networks. Meanwhile, network virtualization has been proposed in this regard as the main enabler for 5G mobile cellular networks. In this paper, we propose a generic framework of slice resource provisioning and customized physical resource allocation for energy-efficiency and quality of service optimization. In resource slicing, we consider user demand and population resources provisioning scheme aiming to satisfy quality of service (QoS). In customized physical resource allocation, we formulate this problem with an integer non-linear programming model, which is solved by a heuristic algorithm based on minimum vertex coverage. The proposed algorithm is compared with the existing approaches, without consideration of slice resource constraints via system-level simulations. From the perspective of infrastructure providers, traffic is scheduled over a limited number of active small-cell base stations (sc-BSs) that significantly reduce the system energy consumption and improve the system's spectral efficiency. From the perspective of virtual network operators and mobile users, the proposed approach can guarantee QoS for mobile users and improve user satisfaction.
Recently, resource optimization research has been actively conducted in enterprises and data centers to manage the rapid growth of big data. In particular, thin provisioning, which allocates a large number of resources compared to fixedly allocated storage resources, has the effect of reducing initial costs, but as the number of resources actually used increases, the cost effectiveness decreases and the management cost for allocating resources increases. In this paper, we propose a technique that divides the physical blocks of flash memory into single-bit cells and multi-bit cells, formats them with a hybrid technique, and manages them by dividing frequently used hot data and infrequently used cold data. The proposed technique has the advantage that the physical and allocated resources are the same, such as thick provisioning, and can be used without additional cost increase, and the underutilized resources can be managed in multi-bit cell blocks, such as thin provisioning, which can allocate more resources than typical storage devices. Finally, we estimated the resource optimization effectiveness of the proposed technique through experiments based on simulations.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.11
/
pp.5404-5424
/
2018
This work is mainly focused on two major topics in cloud platforms by using OpenStack as a case study: management and provisioning of resources to meet the requirements of a service demanded by remote end-user and relocation of virtual machines (VMs) requests to offload the encumbered compute nodes. The general framework architecture contains two subsystems: 1) An orchestrator that allows to systematize provisioning and resource management in OpenStack, and 2) A resource utilization based subsystem for vibrant VM relocation in OpenStack. The suggested orchestrator provisions and manages resources by: 1) manipulating application program interfaces (APIs) delivered by the cloud supplier in order to allocate/control/manage storage and compute resources; 2) interrelating with software-defined networking (SDN) controller to acquire the details of the accessible resources, and training the variations/rules to manage the network based on the requirements of cloud service. For resource provisioning, an algorithm is suggested, which provisions resources on the basis of unused resources in a pool of VMs. A sub-system is suggested for VM relocation in a cloud computing platform. The framework decides the proposed overload recognition, VM allocation algorithms for VM relocation in clouds and VM selection.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.1
/
pp.238-256
/
2016
Modern web services have been broadly deployed on the Internet. Most of these services use multi-tier architecture for flexible scaling and software reusability. However, managing the performance of multi-tier web services under dynamic and unpredictable workload, and different resource demands in each tier is a critical problem for a service provider. When offering quality of service assurance with least resource usage costs, web service providers should adopt self-adaptive resource provisioning in each tier. Recently, a number of rule- and model-based approaches have been designed for dynamic resource management in virtualized data centers. This survey investigates the challenges of resource provisioning and provides a competing assessment on the existing approaches. After the evaluation of their benefits and drawbacks, the new research direction to improve the efficiency of resource management and recommendations are introduced.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.