• Title/Summary/Keyword: Resource Monitoring

Search Result 540, Processing Time 0.035 seconds

Quantitative Analysis of Vitamin B5 and B6 Using High Performance Liquid Chromatography (고속액체크로마토그래피를 이용한 비타민 B5 및 B6의 정량 분석)

  • Kim, Gi-Ppeum;Hwang, Young-Sun;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1186-1194
    • /
    • 2017
  • Recently, many people have demanded reliable nutritional data even for minor-components. On the other hand, an analytical method for the analyses of vitamin $B_5$ and $B_6$ is lacking. Therefore, this study attempted to validate with accuracy and precision the analysis of vitamin $B_5$ and $B_6$ using a high-performance liquid chromatography (HPLC) method. The vitamin $B_5$ and $B_6$ contents were analyzed using an Agilent 1260 series HPLC system. YMC-Pack ODS-AM ($250{\times}4.6mm$ I.D.) and YMC-Pack Pro RS $C_{18}$ ($250{\times}4.6mm$ I.D.) columns were used for the analyses of vitamin $B_5$ and $B_6$, respectively. In the case of vitamin $B_5$, the flow rate was set to 1.0 mL/min by isocratic elution using the 50 mM $KH_2PO_4$ solution (pH 3.5)/acetonitrile (ACN) (95:5, v/v) with monitoring at 200 nm using HPLC/DAD, whereas the flow rate for vitamin $B_6$ was set to 1.0 mL/min of flow rate by isocratic elution using a 20 mM $CH_3CO_2Na$ solution (pH 3.6)/ACN (97:3, v/v) with monitoring by excitation at 290 nm and emission at 396 nm using HPLC/FLD. The column temperature was set to $30^{\circ}C$. The injection volume was $20{\mu}L$ for each experiment. The specificity of the accuracy and precision for vitamin $B_5$ and $B_6$ were also validated by HPLC. The results showed high linearity in the calibration curve for vitamin $B_5$ ($R^2=0.9998^{{\ast}{\ast}}$), the limit of detection (LOD) and limit of quantitation (LOQ) were 0.4 mg/L and 1.3 mg/L, respectively, In contrast, for the calibration curve of vitamin $B_6$, which showed high linearity ($R^2=0.9999^{{\ast}{\ast}}$), the LOD and LOQ were 0.006 mg/L and 0.02 mg/L, respectively.

Determination of cyromazine residues in agricultural commodities using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Cyromazine의 잔류분석법)

  • Song, Lee-Seul;Kim, Young-Hak;Lee, Su-Jin;Hwang, Young-Sun;Kwon, Chan-Hyeok;Do, Jung-Ah;Oh, Jae-Ho;Im, Moo-Hyeog;Chang, Woo-Suk;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.202-208
    • /
    • 2012
  • A high-performance liquid chromatographic (HPLC) method was developed to determine residues of cyromazine, a triazine insecticide, in agricultural commodities. Cyromazine was extracted with 90% aqueous methanol from representative crops which comprised brown rice, oyster mushroom, oriental melon, watermelon, and Chinese cabbage. Following to evaporation of methanol in the extract, the aqueous concentrate was acidified to form the protonated cyromazine. Dichloromethane partition was then applied to remove nonpolar co-extractives in the aqueous phase. Strong cation-exchange chromatography using Dowex 50W-X4 resin was employed for final purification of the extract. Cyromazine was successfully separated on a Zorbax SB-Aq $C_{18}$ column showing high retention for polar compounds. Cyromazine was sensitively quantitated by ultraviolet absorption at 214 nm. Limit of quantitation (LOQ) of the method was 0.04 mg/kg irrespective of sample types. Each crops were fortified at 3 different concentrations of cyromazine for recovery test. Mean recoveries from samples fortified at LOQ~2.0 mg/kg in triplicate ranged 80.2~103.3% in five agricultural commodities. Relative standard deviations in recoveries were all less than 6%. A selected-ion monitoring LC/MS method with electrospray ionization in positive-ion mode was also provided to confirm the suspected residue. The proposed method was reproducible and sensitive enough to routinely determine and inspect the residue of cyromazine in agricultural commodities.

Characterization of Groundwater Level and Water Quality by Classification of Aquifer Types in South Korea (국내 대수층 유형 분류를 통한 지하수위와 수질의 특성화)

  • Lee, Jae Min;Ko, Kyung-Seok;Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • The National Groundwater Monitoring Network (NGMN) in South Korea has been implemented in alluvial/ bedrock aquifers for efficient management of groundwater resources. In this study, aquifer types were reclassified with unconfined and confined aquifers based on water-level fluctuation and water quality characteristics. Principal component analysis (PCA) of water-level data from paired monitoring wells of alluvial/bedrock aquifers results in the principal components of both aquifers showing similar water-level fluctuation pattern. There was no significant difference in the rate of water-level rises responding to precipitations and in the NO3-N concentrations between the alluvial and bedrock aquifers. In contrast, in the results classified with the hydrogeological type, the principal components of water level were different between unconfined and confined conditions. The water-level rises to precipitation events were estimated to be 4.6 (R2=0.8) in the unconfined and 2.1 (R2=0.4) in the confined aquifers, respectively, indicating less impact of precipitation recharge to the confined aquifer. The confined aquifers have the average NO3-N concentration below 3 mg/L, implying the natural background level protected from the sources at surface. In summary, reclassification of aquifers into hydrogeological types clearly shows the differences between unconfined and confined aquifers in the water-level fluctuation pattern and NO3-N concentrations. The hydrogeologic condition of aquifer could improve groundwater resource management by providing critical information on groundwater quantity through recharge estimation and quality for protection from potential contamination sources.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(II): - Results of the Precision Monitoring - (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(II) - 정밀모니터링 결과 중심으로 -)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. 9 anaerobic digestion facilities which is normally operated during the field survey and 14 livestock manure farms were selected for precision investigation. the physicochemical analysis was performed on the moisture and organic contents, nutrients composition (carbohydrate, fat, protein), volatile fatty acids (VFAs), and nitrogen, etc. Volatile solids (VS) of organic wastes brought into the bio-gasification facilities were 2.81 % (animal manure only) and 5.92 % (animal manure+food waste), respectively. Total solids (TS) reults of samples from livestock farms were 5.6 % in piglets and 11~13 % in other kinds of breeding pigs. The actual methane yield based on nutrients contents was estimated to $0.36Sm^3CH_4/kgVS$ which is equivalent to 72 % of theoretical methane yield value. The optimum mixing ratio depending on the effect of the combined bio-gasification was obtained through the continuous stirred-tank reactor (CSTR) which is operated at different mixing ratio of swine manure and food waste leachate. The range of swine manure and food waste leachate from 60:40 to 40:60 were adequate to the appropriate conditions of anaerobic digestion; less than 100 gTS/, more than alkalinity of 1 gCaCO3/L, C/N ratio 12.0~30.0, etc.

Does the Availability of Various Types and Quantity of Food Limit the Community Structure of the Benthos (Mollusks) Inhabiting in the Hard-bottom Subtidal Area? (먹이생물의 종류와 양이 암반 조하대 저서동물(연체동물) 군집구조 결정요소가 될 수 있는가?)

  • SON, MIN-HO;KIM, HYUN-JUNG;KANG, CHANG-KEUN;HWANG, IN-SUH;KIM, YOUNG-NAM;MOON, CHANG-HO;HWANG, JUNG-MIN;HAN, SU-JIN;LEE, WON-HAENG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.128-138
    • /
    • 2019
  • Effects of feeding type and food resource availability on community structure of mollusks inhabiting hard-bottom subtidal areas were investigated. By following guidance from several references, mollusks observed in this study were divided into 5 groups according to feeding type - 1) grazing, 2) filter feeding, 3) deposit feeding, 4) omnivorous and 5) predation. The results showed that both grazing and filter feeders were the most numerous, explaining grazing type in the East Sea accounting for 47.9%, 32.6% in the South Sea and 29.6% for filter feeding, and filter feeding as a dominant feeding type in Yellow Sea accounting for 42.3%. Results of this study showed distinctive difference in community structure depending on mechanism of feeding type and geographical areas where sampling took place. With the results, attempts were made to understand whether community structure could be affected by feeding type or feeding availability and found out that community structure depended heavily on food resource availability. In the East Sea where marine algal density was high, the algal community in the forms of thick-leathery and sheet often occurred in water column with high transparency which provides proper environment for growth. In the South Sea where grazing and filter feeding types were predominated similarly, the algal density was high, but had the relative highest phytoplankton density. Whereas in the Yellow Sea showing the lowest algal biomass compared to the one in the East and the South Sea, and phytoplankton density was similar to those. It might be a adequate environment for filter feeders than grazers. This study concluded that community structure of mollusks showing high abundance was present where food resource availability with types and quantity was high.

The Flora of Protected Area for Forest Genetic Resource Conservation in the National Yonghyeon Natural Recreation Forest, South Korea (국립 용현자연휴양림일대 산림유전자원보호구역의 관속식물상)

  • Byeon, Jun Gi;Shin, Jae Kwon;Jung, Su Young;Kim, Dong-Kap
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.219-239
    • /
    • 2017
  • This study was carried out to investigate the vascular plants of the protected area for forest genetic resource conservation in the National Yonghyeon natural recreation forest. The vascular plants collected 7 times (from February to September 2014) were consist of total 460 taxa; 95 families, 280 genera, 398 species, 3 subspecies, 50 varieties and 9 forms respectively. The 6 taxa of Korean endemic plants and 8 taxa of Korean rare plants were investigated. The floristic regional indicator plants found in this area were 43 taxa comprising 7 taxa of grade IV, 7 taxa of grade III, 12 taxa of grade II, 17 taxa of grade I. The naturalized plants were 39 taxa, therefore naturalized ratio was 8.5%. 460 taxa listed consist of 189 taxa (41.1%) of edible plants, 155 taxa (33.7%)of medicinal plants, 177 taxa (38.5%) of pasture plants, 52 taxa (11.3%) of ornamental plants, 17 taxa (3.7%)of timber plants, 12 taxa (2.6%) of fiber plants and 3 taxa (0.7%) of industrial plants. The vegetation status of investigated area was comparatively well conserved, but human-induced damage is increasingly greater. Therefore, a long-term monitoring of vascular plants and vegetation movement must become accomplished.

The Local Effects of Coal-fired Power Plant Shutdown on PM2.5 Concentration: Evidence from a Policy Experiment in Korea (노후 석탄화력발전소 가동중단에 따른 발전소 주변지역의 초미세먼지 농도 감소효과 분석)

  • Yi, Donggyu;Sung, Jae-hoon
    • Environmental and Resource Economics Review
    • /
    • v.27 no.2
    • /
    • pp.315-337
    • /
    • 2018
  • Korean government temporarily shut down the coal-fired power plants built before 30 years and more from 6/1/2017 to 6/31/2017. This treatment provides a credible natural experiment regarding the regional $PM_{2.5}$ concentration and coal-fired generators. Based on this feature of the treatment, this study analyzed the causality between the old coal-fired power plants and regional $PM_{2.5}$ concentration. To be specific, we categorized two pollution monitoring stations nearby coal-fired power plants in Yeongdong into a treatment station and a control station based on the distance from the power plants. The control station is similar to the treatment station geographically and topographically, but its $PM_{2.5}$ concentration would not be directly affected by coal-fired power plants in Yeongdong. A difference-in-difference method was applied to identify the effects of the old coal-fire power plants on regional $PM_{2.5}$ concentration. The results show that the temporary shutdown would decrease $PM_{2.5}$ concentration nearby coal-fired power plants in Yeongdong by $3.7{\sim}4.4{\mu}g/m^3$.

Development of Real-time Oceanographic Information System for Long Line Hanging Aquaculture Farm and Temperature Variation in the Coastal Area of the East Sea (수하식 양식장용 실시간 해양환경 관측시스템 개발 및 동해 연안의 수온변동 특성)

  • Yang, Joon-Yong;Kim, Lim-Hak;Lee, Joon-Soo;Hwang, Jae-Dong;Suh, Young-Sang;Kim, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1397-1405
    • /
    • 2010
  • Mass mortalities of cultivated organisms have occurred frequently in Korean coastal waters causing enormous losses to cultivating industry. The preventive measures require continuous observation of farm environment and real-time provision of data. However, line hanging aquaculture farm are generally located far from monitoring buoys and has limitations on installation of heavy equipments. Substituting battery pack for solar panels and miniaturizing size of buoy, newly developed system can be attached to long line hanging aquaculture farm. This system could deliver measured data to users in real-time and contribute to damage mitigation and prevention from mass mortalities as well as finding their causes. The system was installed off Gijang and Yeongdeck in Korea, measuring and transmitting seawater temperature at the sea surface every 30 minutes. Short term variation of seawater temperature, less than one day, in Gijang from June to July 2009 corresponded tidal period of about 12 hours and long term variation seemed to be caused by cold water southeast coast of Korea, particularly northeast of Gijang. Seawater temperature differences between Gijang station and the other station that is about 500 m away from Gijang station were $1^{\circ}C$ on average. This fact indicates that it is need to be pay attention to use substitute data even if it is close to the station. Daily range of seawater temperature, one of crucial information to aquaculture, can be obtained from this system because temperature were measured every 30 minutes. Averages of daily range of temperature off Gijang and Yeongdeok during each observation periods were about $2.9^{\circ}C$ and $4.7^{\circ}C$ respectively. Dominant period of seawater temperature variation off Yeongdeok was one day with the lowest peak at 5 a.m. and the highest one at 5 p.m. generally, resulting from solar radiation.

Spatial Distribution of Macropore Flow Percentage and Macroporosities in the Gwangneung Forest Catchment (광릉 산림 소유역에서의 대공극흐름율과 유효대공극부피분율의 공간 분포)

  • Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Lim, Jong-Hwan;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.234-246
    • /
    • 2007
  • The role of macropore in the hydrological processes is important at the hillslope scale. Developments and distribution of macropores have not been investigated in conjunction with the characteristics of the hillslope such as topography, soil property, and soil moisture. In this study, macropore properties, such as macropore flow and saturation hydraulic conductivity were measured at a hillslope located in Gwangneung Research Forest, Pochun-gun, Gyeonggi-do, South Korea. An intensive field survey provided a refined Digital Elevation Model (DEM) for surface and subsurface topography. Spatial distributions of upslope area and topographic index were obtained through the digital terrain analysis. The total number of monitoring points was 22, and the selected points were distributed along the transect of the digital contour map. Vertical fluxes through macropores were measured using a tension infiltrometer at the depth of 0.1 m from the surface. Spatial and temporal distributions of soil moisture were obtained using an on-line measurement system, TRASE, installed in the study area. Soil moisture for the aforementioned points was measured at 0.1 and 0.3m depths below the surface. The results from tension infiltrometer experiments present that the macropore flows ranged between 21 and 94%, and the measured macroporosities varied from 1.4 to 47%. Macropore flows and macroporosities tended to increase as the measurement location moved to downslope. The ability for water conduction through macropores becomes increasingly developed as the location approaches the outlet of the hillslope.