• Title/Summary/Keyword: Resonant mode

Search Result 642, Processing Time 0.027 seconds

Nonlinear sloshing in rectangular tanks under forced excitation

  • Zhao, Dongya;Hu, Zhiqiang;Chen, Gang;Lim, Serena;Wang, Shuqi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.545-565
    • /
    • 2018
  • A numerical code is developed based on potential flow theory to investigate nonlinear sloshing in rectangular Liquefied Natural Gas (LNG) tanks under forced excitation. Using this code, internal free-surface elevation and sloshing loads on liquid tanks can be obtained both in time domain and frequency domain. In the mathematical model, acceleration potential is solved in the calculation of pressure on tanks and the artificial damping model is adopted to account for energy dissipation during sloshing. The Boundary Element Method (BEM) is used to solve boundary value problems of both velocity potential and acceleration potential. Numerical calculation results are compared with published results to determine the efficiency and accuracy of the numerical code. Sloshing properties in partially filled rectangular and membrane tank under translational and rotational excitations are investigated. It is found that sloshing under horizontal and rotational excitations share similar properties. The first resonant mode and excitation frequency are the dominant response frequencies. Resonant sloshing will be excited when vertical excitation lies in the instability region. For liquid tank under rotational excitation, sloshing responses including amplitude and phase are sensitive to the location of the center of rotation. Moreover, experimental tests were conducted to analyze viscous effects on sloshing and to validate the feasibility of artificial damping models. The results show that the artificial damping model with modifying wall boundary conditions has better applicability in simulating sloshing under different fill levels and excitations.

A Study on the Characteristic Analysis of Hybrid Choke Coil suitable for LED-TV SMPS (LED-TV용(用) 전원장치에 적합한 Hybrid 초크 코일의 특성 해석에 관한 연구)

  • Kim, Jong-Hae;Kim, Hee-Sung;Won, Jae-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.32-43
    • /
    • 2014
  • This paper presents the intra capacitance modeling according to the winding method, section bobbin and coil structure for hybrid choke coil capable of the EMI attenuation of broad bands from lower frequency bands to higher frequency bands and high frequency type common-mode choke coil capable of the EMI attenuation of high frequency band used in the EMI Block of LED-TV SMPS. In case of high frequency type CM choke coil, it can be explained the parasitic capacitance of A type and section bobbin type winding methods among them is much smaller than the other. The first resonant frequency of the proposed CM choke coil tends to increase as the parasitic capacitance becomes small and its impedance characteristics also show improved performance as the first resonant frequency increases. In case of hybrid choke coil using rectangular copper wire, it has investigated its parasitic capacitance compared to CM choke coil of conventional toroidal type becomes small. Also it has confirmed through the experiment results that CE margin and RE margin in frequency bands 0.5MHz to 5MHz and 30MHz to 200MHz are respectively 10dB and 15dB greater than that of conventional type in case of one stage EMI filter structure adopting hybrid choke coil compared to two stage EMI Filter structure using two of each CM choke coil used in the lower and higher frequency bands or two of CM choke coil used in only the lower frequency bands. In the future, the hybrid choke coil and CM choke coil of high frequency type show it can be practically used in not only LED/LCD-TV SMPS but also several applications such as LED Lighting, Laptop Adapter, Server Power Supply and so on.

Modal Analysis of an Ultrasonic Tool Horn for RFID TAG Micro-pattern Forming (RFID TAG 미세패턴 성형을 위한 공구혼 진동해석)

  • Kim, Kang-Eun;Lee, Bong-Gu;Choi, Sung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.652-658
    • /
    • 2016
  • In this paper, the theoretical research and simulation using the Finite Element Method (FEM) to design and form a micro-pattern for an ultrasonic horn is described. The present method is based on an initial design estimate obtained by FEM analysis. The natural and resonant frequencies required for the ultrasonic tool horn used for forming the fine pattern were predicted by finite element analysis. FEM analysis using ANSYS S/W was used to predict the resonant frequency for the optimum technical design of the ultrasonic horn vibration mode shape. When electrical power is supplied to the ultrasonic transducer, it is converted into mechanical movement energy, leading to vibration. The RFID TAG becomes the pattern formed on the insulating sheet by using the longitudinal vibration energy of the ultrasonic tool horn. The FEM analysis result is then incorporated into the optimal design and manufacturing of the ultrasonic tool horn.

Characteristics of Disk-type Linear Ultrasonic Motor for Application to x-y Stage

  • Lim Kee-Joe;Park Seong-Bee;Yun Yong-Jin;Lee Kee-Young;Kang Seong-Hwa;Lee Jong-Sub;Jeong Su-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 2006
  • In this paper, a disk-type ultrasonic motor using a combination of radial and bending vibration modes is newly designed and fabricated. The characteristics of the test motor are also measured. By means of traveling elastic wave induced at the surface of circumference of the elastic disk, a steel bar in contact with the surface of circumference of the elastic disk bonded onto the piezoelectric ceramic disks is driven in both directions by changing the sine and cosine voltage inputs. The stator of the motor is composed of two sheets of piezoelectric ceramic disks to bond onto both surfaces of an elastic disk, respectively. As a result, the diameter of the elastic body is increased and the resonant frequency is decreased. The resonant frequency of the stator is about 92 kHz, which is composed with piezoelectric ceramic disks of 28 mm in diameter and 2 mm in thickness, and an elastic body of 32 mm in diameter and 2 mm in thickness. A driving voltage of 20 VPP Produces 200 rpm with a torque of 1Nm and an efficiency of about 10%.

A Study of Center Longitudinal Shunt-Series Coupling Slot Fed by Asymmetric Compound Iris for Waveguide Slot Coupler (도파관 슬롯 커플러용 비대칭 복합 아이리스에 의해 급전되는 중심 종방향 션트-시리즈 결합 슬롯에 관한 연구)

  • Kim, Byung-Mun;Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.586-594
    • /
    • 2013
  • This paper proposes a new coupling element of microwave slot coupler for designing waveguide slot array which can reduce the effect of undesired higher order mode coupling between coupling and radiating slots in the branch waveguide. The proposed device is composed of a centered longitudinal shunt-series coupling slot at the center of broad wall shared by two crossed rectangular waveguides and an asymmetric compound iris that excites the coupling slot. We first have obtained scattering parameters for the proposed coupler by use of EM S/W tool HFSS and then extracted the parameters of T- network equivalent circuit for the coupling slot. We also have analyzed the resonant properties such as resonant length and normalized admittance by changing the geometrical dimensions. The measured results for the fabricated coupler with short-circuited block ${\lambda}_g/4$ away from the coupling slot are well agreed with the simulated ones.

A Characteristic Analysis of Single-Power-Stage High Frequency Resonant AC-DC Converter with High Power Factor (고역률 단일 전력단 고주파 공진 AC-DC 컨버터의 특성해석)

  • 남승식;원재선;황계호;오경섭;박재욱;김동희;오승훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.372-380
    • /
    • 2004
  • This paper proposes a single-power-stage high frequency resonant AC-DC converter with high power factor using ZVS(Zero Voltage Switching), and integrates a conventional converter with two stage into single stage converter. Input power factor is possible to be improved as a high power factor because inductor for power factor correction(PFC) is connected in input and converter is operated in discontinued current mode(DCM) with constant duty cycle and variable switching frequency. The conventional converter with two stage need to add a switch in order to control a power factor, but single stage converter have a advantage that system is simple and cost is down, confidence is improved, etc. This paper described a operation principle and characteristic analysis for single stage AC-DC converter with high power factor and have evaluated characteristic values by using normalized parameter. We make a experimental equipment using MOSFET as a switching device on the basis of characteristic values obtained from characteristic evaluations and we conform a rightfulness of theoretical analysis by comparing theoretical waveforms and experimental waveforms.

A High Voltage Poorer Supply for Electrostatic Precipitator with Superimposing Voltage Pulse on DC Source (펄스 및 직류 중첩형 전기집진기용 고전압 전원장치 개발 연구)

  • Kim, Jong-Soo;Rim, Geun-Hie;Lee, Sung-Jin;Kim, Seung-Min;Cho, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.624-630
    • /
    • 2001
  • The trend of the regulations on environmental issues are getting tight. Responding to this trend new technologies such as moving electrodes, wide pitch and pulsed power supply are also introduced in the electrostatic precipitator(EP) systems. The introduction of wide pitch and moving electrodes enhances the system performance of the EPs by improving air-flow and by improving the ash reentrainment on rapping. The power supplies for the EPs developed up to date include thyristor-based dc or intermittent type, SMPS(switching mode power supply) type and the pulsed-power supply type. The use of the pulsed ones is known to improve dust-collecting efficiency of high resistivity ash and reduces back corona occurrence in the collecting plate. There are two kinds of pulsed-power supplies; one with pulsed transformers and the other with direct dc switching devices. The latter uses rotary spark gap switches or semiconductor switches. Both have the merits and demerits: the spark gap switches are simple and robust but has short life time, hence, high maintenance cost, whereas the semiconductor switches have long life time but are costly. In this study, A high voltage power supply with superimposing voltage pulse on dc source was developed for EPs. This study describes circuit topology, operating principle of the scheme, and analysis of experimental results on Dong-Hae Power Plant. The pulsed power supply consists of a variable dc power supply with ratings of 60kV, 800mA and pulse generator which is made of high voltage thyristor-diode switch strings, an LC resonant tank and a blocking inductor. The pulse generator generates variable pulse-voltage up to 70kV using a high frequency resonant inverter with a variable dc source. Two prototypes were built and tested on 250MW DongHae power plant to verify the possibility of the commercial use and the normal operation in the transient states.

  • PDF

Simple Miniaturization Method of a Microstrip Patch Antenna (마이크로스트립 패치 안테나의 효율적 소형화 기법)

  • 이병제;이호준;강기조;김남영;이종철;김종환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.920-928
    • /
    • 2000
  • In this paper, using newly proposed size reduction technique, the aperture coupled microstrip patch antenna for a repeater system in a mobile communication cellular band (824~849 MHz) is developed with a wide bandwidth, small size, light weight, and low cost. The resonant frequency of microstrip antennas is related to the electric field distribution of the radiating patch. The field strength of $TM_{01}$ mode of a rectangular patch antenna is strongest at each of the extremities of the radiating patch, but negligible at center. Therefore, the size of a patch antenna can be effectively minimized by inserting the narrow rectangular dielectric into just under the edges of the resonant Patch. This Paper also proposes the bandwidth improvement technique by using under-coupling technique with a tuning stub. The VSWR is less than 1.5 : 1 for the whole cellular band. The simulation tool was HFSS, Agilent Technologies, Inc.

  • PDF

Effects of Mean Flow and Nozzle Damping on Acoustic Tuning of a Resonator in a Rocket Combustor (로켓엔진 연소기에서 공명기의 음향 동조에 미치는 유동 및 노즐 감쇠 효과에 관한 연구)

  • Sohn, Chae-Hoon;Park, I-Sun;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Effects of mean flow and nozzle damping on acoustic tuning of a gas-liquid scheme coaxial injector are investigated numerically adopting a linear acoustic analysis. The injector plays a role as a half-wave acoustic resonator for acoustic damping in a combustion chamber of a liquid rocket engine. As Mach number of mean flow in a chamber increases, the resonant frequency of the first tangential mode decreases slightly and the optimum injector tuning length varies negligibly. Nozzle damping affects neither the resonant frequency nor the optimum length. From these numerical results, effects of mean flow and nozzle damping on acoustic tuning of a resonator are negligible. As open area of the injectors increases, the acoustic amplitude decreases, but new injector-coupled modes appear.

Microwave Measurement of Complex Permittivity of Dielectric Resonators (초고주파 유전체공진기의 복소유전율 측정)

  • Kim Jeong-Phill;Park, Wee-Sang
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.9-19
    • /
    • 1990
  • A theoretical analysis and measurement technique to determine the complex permittivity and permeability of cylindrical and ring type dielectric resonators is given. The resonant frequency, unloaded quality factor and physical dimensions of dielectric resonator placed between two parallel conducting plates are used to evaluate the complex permittivity and permeability. This process is repeated for other higher-order modes to expand the evaluation at higher resonant frequencies. The nature of each mode is identified by measuring the variations of field strength along the azimuthal and longitudinal direction. An error analysis taking into account various error sources reveals that $TE_{0np}$ or quasi-TE modes yield the least amount of measurement error, which is less than $0.5{\%}$for the real part, $4{\%}$for the imaginary part of complex permittivity.

  • PDF