• Title/Summary/Keyword: Resonant circuit

Search Result 939, Processing Time 0.023 seconds

Characteristic Analysis of Thyristor PWM Rectifier for low-frequency Induction Heating System (저주파 유도가열 장치용 싸이리스터 PWM 정류기의 특성분석)

  • Yoon D.C.;Lee K.B.;Choy Y.D.;Beak S.T.;Han B.M.;Soh Y.C.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.681-684
    • /
    • 2001
  • This paper proposes a new induction heating system composed of a thyristor PWM rectifier with a resonant commutation circuit. The operation of proposed system as first analyzed by a theoretical approach with equivalent circuits. And its verification was performed by computer simulations with EMTP. The proposed system can provide a solution for the power factor problem of the existing high-power induction heating system, which uses the line-commutated thyristor bridge in rectifier side.

  • PDF

Contact-less Power Supply Using Series-Parallel Rasonant Converter ($\cdot$병렬 공진형컨버터를 이용한 비접촉전원)

  • Kim E. S.;Goo D. H.;Kim J. M.;Kang D. H.;Shin B. C.;Kong Y. S.;Yang S. C.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.103-107
    • /
    • 2002
  • A contact-less power supply system (CPS) allows electrical energy to supply to mobile consumers without any electrical or mechanical contact. CPS works in the same principle as a transformer, with the track litz cable forming the primary circuit and the pickup as the secondary. The track power supply generates the high frequency alternating current in the track cable. The captured AC magnetic field generated by the track conductors produces electrical energy in the pickup coil and the pickup rectifier converts the high frequency AC power to DC while regulating the power to the load. This paper presents the theoretical analysis, simulation and experiment리 results of the series-parallel resonant converter working as contact-less power supply system.

  • PDF

Characteristics of Non-Isolated OSAKA Converter -Characteristics of Three-Phase Soft-Switching Power Factor Corrected Converter for Large Scale Power Without Three-Phase Transformer-

  • Taniguchi, Katsunori;Shimomori, Wataru;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1383-1386
    • /
    • 2005
  • Non-isolated OSAKA Converter, which removes a three-phase transformer, is described in this paper. The converter switches once in every half cycle of an AC commercial power source. Therefore, it can solve many problems caused by the high frequency operation. The proposed converter achieves the soft-switching operation and the EMI noise can be reduced. In this circuit, the resonant capacitor, which is used for the soft-switching operation, is utilized for the improvement of an input current waveform. To achieve low cost and compact structure, non-isolated OSAKA converter removes a three-phase transformer of the OSAKA converter. By removing the three-phase transformer, three phase currents occur the interferences each other. To avoid the interference, a new switching method for non-isolated OSAKA converter is preposed. The converter can be constructed by the low-speed large power devices. The converter generates the low distorted input current waveforms with high power factor.

  • PDF

A Study on the ZVT Boost Converter with reduced Auxiliary switch losses (ZVT Boost 컨버터의 보조스위치 손실 저감에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Kwon, Soon-Do;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1428-1431
    • /
    • 2005
  • This paper presents an improved ZVT(Zero Voltage Transition) DC/DC Boost Converter using Active Snubber. The Conventional ZVT PWM Boost Converter is improved to minimize the switching loss of auxiliary switch using the minimum number of the components. In this thesis, advantage and disadvantages of Conventional ZVT Converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter will be discussed. In comparison a previous ZVT converter, the proposed converter reduces turn-off switching loss of the auxiliary switch. Therefore, the proposed converter has a high efficiency by active snubber. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

A Simulation Model of Cold Cathode fluorescent Lamp for High Frequency operation (고주파 구동 냉음극 형광방전램프의 시뮬레이션 모델)

  • Kim, Cherl-Jin;Yoo, Byeong-Kyu;Yoon, Shin-Yong;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1503-1505
    • /
    • 2005
  • The Cold cathode fluorescent lamp(CCFL) are widely used to illuminate the liquid crystal display(LCD). Ballasts are required for CCFL because the lamp need high starting voltage and behave negative dynamic resistant characteristics in the desired region of operation. Dimming methods of CCFL are used to pulse frequency modulation(PFM) or pulse width modulation(PWM). In this paper, CCFL driving and control circuit is designed by half-bridge type series and parallel resonant inverter that variable frequency modulation method to control the output voltage current. The validity of this study is confirmed from the simulation and experimental results.

  • PDF

Study on Transmission Loss in Smart Panel Using Piezoelectric Shunt (압전 션트를 이용한 스마트 패널의 투과 손실 관한 연구)

  • Lijie, Zhao;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.541-544
    • /
    • 2005
  • In this paper, admittance is introduced to represent electro-mechanical characteristics of piezoelectric structures and to predict the performance of piezoelectric shunt system. Finite element method is used to obtain numerical admittance. In order to illuminate the effect of noise reduction in the shunt system, two experimental setups were constructed. One is for matching the resonant shunt damping. The other is a standard test setup according to SAE J1400 used to measure the transmission loss for the smart panel with shunt circuit. Shunt performance and noise reduction of smart panel are realized by these two experiments.

  • PDF

Analysis of Transformer Leakage Inductance in Active Clamped Flyback Inverter (능동 클램프 플라이백 인버터에서의 변압기 누설 인덕턴스 영향 분석)

  • Park, Jeong-Kyu;Kim, Young-Ho;Ji, Young-Hyok;Lee, Tae-Won;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.190-191
    • /
    • 2010
  • In this paper, an analysis for leakage inductance of transformer in active clamped flyback inverter is presented. In the active clamp circuit of flyback inverter, the leakage inductance influences on the voltage across the primary switch and the resonant capacitor. Therefore, it is essential to optimize the leakage inductance design. In order to verify the theoretical analysis for the leakage inductance, PSIM simulation is used.

  • PDF

Design of New Induction Heating Power Supply for Forging Applications Using Current-Source PWM Converter and Inverter (전류원 PWM 컨버터 / 인버터를 이용한 새로운 단조용 유도가열 전원장치의 설계)

  • Choi, Seung-Soo;Lee, Chang-Woo;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1602-1610
    • /
    • 2018
  • Induction heating can convert electrical energy to thermal energy with high conversion efficiency and quick heating. Currently, a current source rectifier/inverter-fed parallel resonant circuit is widely used as an induction heating power supply for forging applications. However, the conventional induction heating power supplies composed of phase-controlled rectifier and SCR inverter have low efficiency and low power factor at input side, and require additional starting circuitry. So this paper proposes new induction heating power supply topologies for forging applications which have high power factor, high efficiency, and large output power. It also suggests detailed design guideline.

Design Considerations of Asymmetric Half-Bridge for Capacitive Wireless Power Transmission

  • Truong, Chanh Tin;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.139-141
    • /
    • 2019
  • Capacitive power transfer has an advantage in the simplicity of the energy link structure. So, the conventional phase -shift full bridge sometime is not always the best choice because of its complexity and high cost. On the other hand, the link capacitance is usually very low and requires high-frequency operation, but, the series resonant converter loses zero-voltage switching feature in the light load condition, which makes the switching loss high especially in CPT system. The paper proposes a new low-cost topology based on asymmetric half-bridge to achieve simplicity as well as wide zero voltage switching range. The design procedure is presented, and circuit operations are analyzed and verified by simulation.

  • PDF

A Study on Output Voltage Stabilization of 20W Class Multi-output QR Flyback Converter for Auxiliary Power (20W급 보조전원용 다출력 QR 플라이백 컨버터의 출력전압 안정화에 관한 연구)

  • Yoo, Jeong Sang;Gil, Yong Man;Kim, Hyun Bae;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.157-160
    • /
    • 2021
  • In this paper, a 20W class multi-output QR flyback converter for auxiliary power supply was designed to stabilize 4 output voltages, and the efficiency and load characteristics were compared and analyzed. It was checked if each output affects other output characteristics through experiment. As a result, the experimental circuit reached a high efficiency of 82.5% or more at a load power of over 20W, and the maximum power loss was 2.6W. Consequently, it was confirmed that all of 4 output voltages of the multi-output QR flyback converter constructed in this paper were stabilized within 0.5% in full-load range, and each output was independently controlled in an electrically isolated state.