• Title/Summary/Keyword: Resonant Column Tests

Search Result 79, Processing Time 0.023 seconds

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : II. Verification of Applicability (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : II. 적용성 검증)

  • Park, Chul-Soo;Mok, Young-Jin;Hwang, Seon-Keun;Park, In-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.57-66
    • /
    • 2009
  • In the preliminary investigation (Park et al., 2009), the use of compressional wave velocity and its measurement techniques were proposed as a new quality control measure for trackbed fills. The methodology follows exactly the same procedure as the density control, except the density being replaced by the compressional wave velocity involving consistently with resilient modulus of design stage. The specifications for the control also include field compaction water content of optimum moisture content ${\pm}2%$ as well as the compressional wave velocity. In this sequel paper, crosshole and resonant column tests were performed as well direct-arrival method and laboratory compressional wave measurements to verify the practical applicability of a methodology far the new quality control procedure based upon compressional wave velocity. The stress-modified crosshole results reasonably well agree with the direct-arrival values, and the resonant column test results also agree well with the field crosshole results. The compressional wave velocity turned out to be an excellent control measure for trackbed fills both in the theoretical and practical point of view.

Undisturbed Sampler for Characterizing the Behaviour of Weathered Granite Residual Soils (화강풍화토의 거동 특성 규명을 위한 비교란 시료채취기 개발)

  • 정순용;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 1997
  • In Korea, granite is abundant and occupies around two-thirds of the country's ground. Bven though weathered granite residual soils are widely distributed, undisturbed sampling of this soil is extremely difficult because of the particultate structure. This difficulty has kept away the researchers from investigating !he deformational characteristics of weathered granite residual soil. Thus, a special undisturbed sampling device was developed and undisturbed samples were prepared for triaxial compression (TX), resonant column(RC), and torsional shear (75) tests. Local deformation transducer (LDT) was fabricated for internal strain measurements during TX tests. Both undisturbed samples and statically compacted samples of same density were tested by using TX with LDT, RC, and 75 test equipments. The behaviour of statically compacted specimens was almost the same as that of undisturbed samples in the strain ranges below 1 percent. The stiffness and strength decreased with increasing degree of weathering. In case of undisturbed specimens, strains at failure are widely varied from 2 percent to 11 percent, and planes of failure are irrelevant to the angle of internal friction due to the inhomogeneous nature.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In the trackbed design using elastic multilayer model, the stress-dependent resilient modulus $(E_R)$ is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. The this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil (SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

Dynamic Deformational Characteristics of Subgrade Soils with Variations of Capillary Pressure and Water Content (모관흡수력 및 함수비에 따른 노상토의 동적변형특성 연구)

  • 김동수;김민종;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.109-122
    • /
    • 2002
  • The water content of soil near the ground subgrade varies seasonally, and dynamic deformational characteristics of soil are affected by the variation of water content. Contrary to previous studies which used various specimens of different compaction moisture contents, the influences of water content and capillary Pressure on dynamic deformational characteristics of soil were investigated using the given specimen controlling the matric suction. RC/TS(resonant column and torsional shear) testing equipment was modified so that it can control water content with changing capillary pressure(matric suction). RC/TS tests were performed on subgrade soil collected in the KHC(Korea Highway Corporation) test road. In the field, the cross-hole tests were performed and the water contents were measured at the same site to verify the feasibility and applicability of RC/TS test results. As water content decreased, the tendency of increasing shear moduli in field was well matched with laboratory test results.

Identifying Strain Associated with Damping Ratio from Tosional Test Using a Combined Damping Model (복합감쇠모델을 이용한 비틂 시험기로 얻은 감쇠비에 상응하는 변형률 산정)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 2008
  • The complexity of determining strain associated with shear modulus and damping ratio in torsional tests has been resolved by means of several approaches. Particularly, the modified equivalent radius approach is adequate to when generating the plots of equivalent radius ratio versus strain more effectively over any range of strains in resonant column and torsional shear (RC/TS) tests. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models in evaluating damping ratio. Results showed that using a single value of equivalent radius ratio based on conventional equivalent radius approach is not appropriate. A new model was developed to consider the soil damping behavior at small strains as well as hysteretic damping and it was attempted to determine adjustments are required in evaluating strain associated damping when combining the two damping components.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

Evaluation of Maximum Shear Modulus of Silty Sand in Songdo Area in the West Coast of Korea Using Various Testing Methods (다양한 시험 방법을 이용한 서해안 송도 지역에 분포하는 실트질 모래의 최대 전단탄성계수 평가)

  • Jung Young-Hoon;Lee Kang-Won;Kim Myoung-Mo;Kwon Hyung-Min;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.65-75
    • /
    • 2005
  • Maximum shear modulus of soil is a principal parameter for the design of earth structures under static and dynamic loads. In this study, the statistical data of maximum shear moduli of silty sands in Songdo area in the west coast of Korea evaluated by various field and laboratory tests - standard penetration test (SPT), cone penetration test (CPT), self-boring pressuremeter test (SBPT), downhole test (DH), seismic cone penetration test (SCPT) and resonant column test (RC) were analyzed. Based on the measurement of shear moduli using DH which is known as maximum value at very small strain, the new empirical correlations between shear moduli and SPT or CPT values were proposed. Predictions of maximum shear moduli using the proposed correlations were compared with the data obtained from DH. The good agreement confirmed that the proposed correlations reasonably predicted the maximum shear moduli of silty sands in the area.

Dynamic Behavior Properties of Decomposed Granite Soil varying Content of Stone Sludge and Bentonite (석분 및 벤토나이트 함유량에 따른 화강풍화토의 동적거동 특성)

  • Lee, Kang-Il;Kim, Min-Jun;Kim, Tae-Hoon;Woo, Jong-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.35-45
    • /
    • 2012
  • Dynamic characteristics of decomposed granite soil mixed with stone sludge and bentonite were investigated to figure out adequate applications of stone sludge, A total of 16 specimens with different stone sludge contents of 0%, 5%, 10%, 15% and bentonite with 0%, 5%, 10%, 15% were prepared. Resonant column tests were carried out on each specimen at different confining pressure. The results showed that the optimum mixing ratio which can satisfy the maximum shear modulus and the minimum damping ratio of the decomposed granite soils ranges from 5% to 10% respectively.

Correction Factors for Modulus Calculation Equation used in Light Weight Deflectometer Considering Track Foundation (궤도노반 강성차이를 고려한 동평판재하시험(LWDT) 동탄성계수 산정공식 수정계수)

  • Choi, Chan Yong;Lee, Jin Wook;Lim, Yuijn;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • LWDT was developed for use as an alternative technique to measure the stiffness of trackbed soils. In this study, numerical and theoretical analyses of LWDT's acting mechanism were performed. The effectiveness of the adapted elastic formula used for calculation of the dynamic modulus, Evd, was investigated theoretically and also numerically by running ABAQUS analysis. The minimum thickness of the upper layer is proposed based on the analysis. Correction factors for the formula of elastic modulus are also proposed in this study. In the future, following field test results and laboratory mechanical tests such as the resonant column test, a guideline for the use of LWDT as a standard test protocol in track construction sites, as a measuring tool for the degree of compaction and/or stiffness and dynamic modulus, will be proposed based on this analysis.

Determination of Density of Saturated Sand Considering Particle-fluid Interaction During Earthquake (입자-유체 상호거동을 고려한 지진시 포화 모래지반의 밀도 결정)

  • Kim, Hyun-Uk;Lee, Sei-Hyun;Youn, Jun-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.41-48
    • /
    • 2022
  • The mass density of the medium (ρ) used to calculate the maximum shear modulus (Gmax) of the saturated ground based on the shear wave velocity is unclear. Therefore, to determine the mass density, a verification formula and five scenarios were established. Laboratory tests were conducted, and the obtained results were compared. The mass density of the medium was assumed to be saturated (ρsat), wet (ρt), dry (ρdry), and submerged conditions (ρsub), and the Vs ratios of saturated to dry condition were obtained from each case. Assuming the saturated density (ρsat), the Vs ratio was consistent with the value from the resonant column test (RCT) results, and the value from the bender element test results was consistent with the wet density assumption (ρt). Considering the frequency range of earthquakes, it is concluded that applying the saturated density (ρsat) is reasonable as in the RCT results.