• Title/Summary/Keyword: Resonance structures

Search Result 761, Processing Time 0.027 seconds

Stability augmentation of helicopter rotor blades using passive damping of shape memory alloys

  • Yun, Chul-Yong;Kim, Dae-Sung;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.137-147
    • /
    • 2006
  • In this study, shape memory alloy damper with characteristics of pseudoelastic hysteresis for helicopter rotor blades are investigated. SMAs can be available in damping augmentation of vibrating structures. SMAs show large hysteresis in the process of pseudoelastic austenite-martensite phase transformation which takes place while subjected to loading above the austenite finish temperature. Since SMAs display pseudoelastic hysteresis behavior over large strain ranges, a significant amount of energy dissipation is possible. A damper can be designed with SMA wires prestressed to a baseline level somewhere in the middle of the pseudoelastic stress range. An experimental study of the effects of pre-strain and cyclic strain amplitude as well as frequency on the damping behavior of pseudoelastic shape memory alloy wires are performed. The effects of the shape memory alloy damper on aeroelastic and ground resonance stability of helicopter are studied. In aeroelastic stability, the dynamic characteristics of blades related to pitch angle and the amplitude of lag motion for the rotor equipped with SMA damper were examined. The performance of SMA damper on ground resonance instability are presented through the frequencies and modal damping with respect to rotating speed.

Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures (DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성)

  • Choi, Tae-Eun;Yang, Jinseok;Um, Sungyong;Jin, Sunghoon;Cho, Bomin;Cho, Sungdong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

An Effect of Energy Group Structure and Weighting Spectrum at the Resonance Energy Region of Iron on Neutron Shielding Calculation (철의 공명에너지 영역의 에너지군구조 및 가중스펙트럼이 중성자 차폐계산에 미치는 영향)

  • Jung-Do Kim;Yukio Ishiguro
    • Nuclear Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 1985
  • Effects of differences between fine- and broad-group structures and spectrum as a weighting function at the resonance energy region of iron on a neutron shielding calculation were analyzed with the ANISN code and ENDF/B-IV data. The problems analyzed are the broad-group effect, the effect for variation of iron thickness, and the effect of problem-dependent weighting spectrum. In order to verify the group data and method used, a calculational benchmark was performed with the continuous-energy Monte Carlo code VIM. The result was compared with the ANISN calculations using the fine- and broad-group data.

  • PDF

Arteriovenous Malformation on the Medial Plantar Area of the Foot: A Case Report (족저 내측부의 동정맥 기형: 증례 보고)

  • Ha, Dae-Ho;Kwon, Jung-Nam;Kim, Yu-Mi;Lee, Jun-Hyung
    • Journal of Korean Foot and Ankle Society
    • /
    • v.20 no.4
    • /
    • pp.187-191
    • /
    • 2016
  • Arteriovenous malformation (A-V malformation) is defined as an abnormal connection between arteries and veins that lead to A-V shunting with an intervening network of vessels. A-V malformation is a rare condition, and spontaneous regression is also rare. A-V malformation becomes symptomatic when the surrounding tissue and osseous structures are negatively affected. A-V malformation has a high recurrence rate and is relatively hard to treat. In this case, a huge mass with pulsatile and bruit on the medial plantar area were observed. With the diagnosis of A-V malformation in accordance with the results from ultrasonography, magnetic resonance imaging and computed tomography angiography, and mass excision with feeding vessel ligation through plantar midfoot approach was completed successfully.

Assessment of Malignancy in Human Brain Tumors by in vivo 1H MR Spectroscopy at 3 Tesla

  • Choe, Bo-Young;Baik, Hyun-Man;Chu, Myung-Ja;Kwon, Kang-Sei;Chung, Sung-Taek;Oh, Chang-Hyun;Kim, Sun-I;Park, Chi-Bong;Lee, Hyoung-Koo
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.80-80
    • /
    • 2002
  • Purpose: Three tesla high field MR has been important to those disciplines that are SNR limited, such as MR spectroscopy. Additionally, increased spectral dispersion is critical for minimizing spectral overlap and simplifying resonance structures. The purpose of this study was to assess clinical proton MR spectroscopy (MRS) as a noninvasive method for evaluating brain tumor malignancy at 3T high field system Materials and Methods: Using 3T MRI/MRS system, localized water-suppressed single-voxel technique in patients with brain tumors was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantificated as a relative ratio.

  • PDF

Effect of [Al(DMSO2)3]3+ Concentration on Al Electrodeposition from AlCl3/Dimethylsulfone Baths

  • Kim, Sangjae;Matsunaga, Naoya;Kuroda, Kensuke;Okido, Masazumi
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.69-77
    • /
    • 2018
  • Aluminum electrodeposition was carried out in dimethylsulfone ($DMSO_2$) baths containing 6.2-28.3 mol% $AlCl_3$ at 403 K. The electrochemically active species for Al electrodeposition in $DMSO_2$ baths were investigated. Electrochemical behavior of the electrolyte and the deposition mechanism were studied via cyclic voltammetry (CV). Properties of the deposits were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray diffraction. In addition, structures of the ionic complexes formed with aluminum in the bath were characterized by $^{27}Al$ nuclear magnetic resonance (NMR) spectroscopy. NMR spectra revealed that all baths contained two ionic species: $AlCl_4{^-}$ and $[Al(DMSO_2)_3]^{3+}$. Al electrodeposited when the $[Al(DMSO_2)_3]^{3+}$ concentration was the highest (23.3 mol% $AlCl_3$) exhibited fine grain sizes, relatively smooth surfaces, and high purities.

Determination of the Degree of Nonlinearity in the Response of Offshore Structures Using Higher Order Transfer Functions (고차 전이함수를 이용한 해양구조물 거동의 비선형도 결정)

  • 백인열
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.116-125
    • /
    • 1995
  • Higher order nonlinear transfer functions are applied to model the nonlinear responses obtained Inn dynamic analysis of single degree of freedom systems (SDOF) subjected to wave and current loadings. The structural systems are subjected to single harmonic, two wave combination and irregular wave loading. Three different sources of nonlinearities are examined for each of the wave loading condition and it is shown that the nonlinear response appear at the resonance frequencies of the SDOF even when virtually no wave energy exists at those resonance frequencies. Higher order nonlinear transfer functions based on Volterra series representation are used to model the nonlinear responses mainly f3r the flexible systems and clearly shows the degrees of nonlinearity either as quadratic or cubic.

  • PDF

Noise and vibration reductions in exhaust duct system of cogeneration power plants (열병합발전소 배기 덕트 시스템의 소음 진동 저감)

  • Kim, W.H.;Joo, W.H.;Bae, J.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.641-646
    • /
    • 2004
  • Noise and vibration was encountered in exhaust duct system which is connected with a gas turbine and a heat recovery steam generator(HRSG) of a cogeneration power plants. Especially, these problems occurred when water was added to the fuel injection to reduce NOx contents of the exhaust gas. Through the cavity mode analysis and measurements, It was concluded that these problems occurred due to the acoustic resonance between the duct cavity mode and the excitation force induced by turbulent gas flow during water injection. To reduce the noise and vibration, optimal baffle plate to change the cavity mode was installed inside of duct and noise levels of about 8 dB(A) are reduced in duct system. The effects of baffle plate and guide vane to the HRSG or inlet duct vibration were also evaluated and it was verified that there is no relation to the resonance phenomena. So, vibration of inlet duct was easily reduced by the reinforcement of structures.

  • PDF

NMR Studies of Ni-binding Luteinizing Hormone Releasing Hormone

  • Kim, Jin;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.143-153
    • /
    • 2009
  • Luteinizing Hormone Releasing Hormone (LHRH) is composed of 10 amino acids, and is best known as a neurotransmitter. Because of the 80% homology in animals, much more concerns have focused on the substances that have similar functions or can control LHRH. Ni, Cu-LHRH complexes were synthesized. The degree of complexation was monitored by $^1H,\;^{13}C$-NMR chemical shifts, and final products were identified by ESI-Mass spectrum. Solution-state structure determination of Ni-LHRH complex was accomplished by using NMR results and NMR-based distance geometry (DG). Interproton distances from nuclear Overhauser effect spectroscopy (NOESY) were utilized for the molecular structure determination. Results were compared with previous structures obtained from energy minimization and other spectroscopic methods. Structure obtained in this study has a cyclic conformation which is similar to that of energy minimized, and exhibits a specific a-helical turn with residue numbers (2~7) out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni, Cu-LHRH complexes exhibit that Ni-LHRH complex has same binding sites with the 4-coordination mode as in Zn-LHRH complex.

Study on Vortex-Induced Vibration Predictions for Ship Rudders

  • Jang, Won-Seok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.325-333
    • /
    • 2020
  • As regulations concerning ship vibration and noise are becoming stricter, considerable attention is being drawn to prediction technologies for ship vibration and noise. In particular, the resonance and lock-in phenomena caused by vortex-induced vibration (VIV) have become considerably important with increases in the speed and the size of ships and ocean structures, which are known to cause structural problems. This study extends the fluid-structure interaction (FSI) analysis method to predict resonances and lock-in phenomena of high modes and VIV of ship rudders. Numerical stability is secured in underwater conditions by implementing added mass, added damping, and added stiffness by applying the potential theory to structural analysis. An expanded governing equation is developed by implementing displacements and twist angles of high modes. The lock-in velocity range and resonant frequencies of ship rudders obtained using the developed FSI method agree well with the experimental results and the analytic solution. A comparison with local vibration guidelines published by Lloyd's Register shows that predictions of resonances and lock-in phenomena of high modes are necessary in the shipbuilding industry due to the possible risks like fatigue failure.