• 제목/요약/키워드: Resonance Type

Search Result 1,096, Processing Time 0.031 seconds

A Clinical Analysis of Intervertebral Disc Change on Magnetic Resonance Imaging(MRI) Scan of the Patients Who were Diagnosed as Spondylolisthesis (척추전방전위증 환자에서의 자기공명영상 상 추간판 변형 형태 고찰)

  • Kim, Seok;Bahn, Hyo-Jung;Yoon, Hyun-Seok;Kim, Sun-Min;Jun, Byung-Chul
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.4
    • /
    • pp.119-130
    • /
    • 2011
  • Objectives: The purpose of this study is to find cut the characteristics of intervertebral disc changes arid relative factors of the patients with spondylolisthesis. Methods: We investigated 95 cases of patients who visited one Korean traditional medicine hospital and were diagnosed as spondylolisthesis on lumbar spine X-ray and lumbar spine magnetic resonance imaging(MRI). We selected these cases retrospectively and randomly. We analysed the relativity between number of changed discs and type of change disc and age, level of spondylolisthesis and type of spondylolisthesis. Results: 1. The number of changed discs increased with older and degenerative spondylolisthesis type(p<0.05) and was not related to the level of spondylolisthesis. 2. Bulging disc is the dominant type of disc change(74.12%). The type of changed disc was shown to be similar in lytic and degenerative spondylolisthesis. It was not relative to the level of spondylolisthesis(p>0.05). 3. The direction of nerve compression was diffuse type in about halfly of the patients(47.06%) and the symptoms of patent and dermatome did not matched in 54 cases. Conclusions: The patients who visited a Korean medicine hospital and were diagnosed as spondyolithesis have different characteristics from the established studies. Their discs changed dominantly to diffuse bulging type and the symptoms of patient were not related with the direction and level of the changed discs were spondylolisthesis existed.

New Classes of LC Resonators for Magnetic Sensor Device Using a Glass-Coated Amorphous CO83.2B3.3Si5.9Mn7.6 Microwire

  • Kim, Yong-Seok;Yu, Seong-Cho;Hwang, Myung-Joo;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • New classes of LC resonators for micro magnetic sensor device were proposed and fabricated. The first type LC resonator (Type I) consists of a small piece of microwire and two cylindrical electrodes at the end of the microwire without direct contact to its ferromagnetic core. In type I resonator the ferromagnetic core of the microwire and cylindrical electrodes act as an inductor and two capacitors respectively to form a LC circuit. The second type LC resonator (Type II) consists of a solenoidal micro-inductor with a bundle of soft magnetic microwires as a core. The solenoidal micro-inductors fabricated by MEMS technique were $500\sim1,000\;\mu{m}$ in length with $10\sim20$ turns. A capacitor is connected in parallel to the micro-inductor to form a LC circuit. A tiny glass coated $CO_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire was fabricated by a glass-coated melt spinning technique. A supergiant magneto-impedance effect was found in a type I resonator as much as 400,000% by precise tuning frequency at around 518.51 MHz. In type II resonator the changes of inductance as a function of external magnetic field in micro-inductors with properly annealed microwire cores were varied as much as 370%. The phase angle between current and voltage was also strongly dependent on the magnetic field. The drastic increments of magnetoimpedance at near the resonance frequency were observed in both types of LC resonators. Accordingly, the sudden change of the phase angle, as large as $180^{\circ}C$, evidenced the occurrence of the resonance at a given external magnetic field.

A Study on the igniter using resonance tube (공명관을 이용한 점화기 연구)

  • Lee, Jung-Min;Kwon, Min-Chan;Shin, Dong-Sun;Semenov, V.V.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.112-117
    • /
    • 2004
  • This work is on numerical and experimental studies on the new type igniter using aerodynamic energy. The aerodynamic igniter consists of a nozzle and a resonance tube. The supersonic jet from a nozzle coming into the resonance tube generates pressure oscillation between the nozzle and the resonator. This oscillation changes the kinetic energy to thermal energy in the resonator under a certain condition. In this study, sonic and supersonic nozzles were tested in two different resonators, results has been compared. And geometrical optimum values of a supersonic nozzle has been suggested to reduce aerodynamic loss and friction in the expanded surface of the nozzle.

The Electric Field Dependence of the Resonance Characteristics and Piezoelectric Constant of the PZT-PMNS Ceramics (PZT-PMNS 세라믹의 공진특성 및 압전 정수의 전계의존성)

  • Oh, Jin-Heon;Lim, Kee-Joe;Kang, Seong-Hwa;Kim, Hyeon-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.179-180
    • /
    • 2008
  • In this paper, the variable tendency piezoelectric constant and resonance characteristics piezoelectric ceramics due to the electric field is studied. The practical application of piezoelectric ceramics is not only applied in field of small signal. For example, in case of an ultrasonic motor, $120{\sim}130Vrms$ of driving voltage is needed and that of an piezoelectric pump, $200{\sim}220Vrms$ of voltage is required. Therefore, to examine the characteristics of piezoelectric ceramics in large signal contributes to reducing the susceptibility to the multifarious application and securing the ease of the production of control circuit. These contributions may be connected to the expansion of industrial application. We fabricated disk-type piezoelectric ceramic samples by using conventional method and measured the resonance characteristics of these samples under from low to high voltage driving conditions. According to increasing the value of the input voltage, we measured the resonance frequency of the piezoelectric ceramic, and inquired into the cause of these phenomena.

  • PDF

Uncertainty Minimization in Quantitative Electron Spin Resonance Measurement: Considerations on Sampling Geometry and Signal Processing

  • Park, Sangeon;Shim, Jeong Hyun;Kim, Kiwoong;Jeong, Keunhong;Song, Nam Woong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2020
  • Free radicals including reactive oxygen species (ROS) are important chemicals in the research area of biology, pharmaceutical, medical, and environmental science as well as human health risk assessment as they are highly involved in diverse metabolism and toxicity mechanisms through chemical reactions with various components of living bodies. Electron spin resonance (ESR) spectroscopy is a powerful tool for detecting and quantifying those radicals in biological environments. In this work we observed the ESR signal of 2,2,6,6-Tetra-methyl piperidine 1-oxyl (TEMPO) in aqueous solution at various concentrations to estimate the uncertainty factors arising from the experimental conditions and signal treatment methods. As the sample position highly influences the signal intensity, dual ESR tube geometry (consists of a detachable sample tube and a position fixed external tube) was adopted. This type of measurement geometry allowed to get the relative uncertainty of signal intensity lower than 1% when triple measurements are averaged. Linear dependence of signal intensity on the TEMPO concentration, which is required for the quantification of unknown sample, could be obtained over a concentration range of ~103 by optimizing the signal treatment method depending on the concentration range.

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

Optimal Design of Thin Type Ultrasonic Motor (박형 초음파모터의 최적 설계)

  • Jeong, Seong-Su;Jun, Ho-Ik;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.335-340
    • /
    • 2008
  • In this study, novel structured thin ultrasonic rotary motor has been proposed. Ultrasonic motors are based on an elliptical motion on the surface of elastic body. Thin brass plate was used as a cross shaped vibrator and eight ceramic plates were attached on upper side and bottom side of the brass plate. From the thin stator, elliptical displacements of the four contact tips were obtained. To find the optimal size of the stator, motions of the motors were simulated using ATILA by changing length, width and thickness of the ceramics. The stators had commonly three resonance peaks and contact tips of the stator moved on tangential or normal trajectories at these resonance peaks. The maximum displacements at the resonance peaks were compared. As results, maximum displacements of the contact tips were obtained at the length of 16 mm, width of 6 mm and thickness of 0.4 mm. Changes of the resonance frequencies were inversely proportional to the length of ceramic and proportional to the width of ceramic. The motor was fabricated by using the designed stator. And, the characteristics of the motor were compared with the simulated results. When the motor was fabricated with these results, speed fo 935 rpm was obtained by input voltage of 25 Vrms at 93.5 kHz.

Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor

  • Kim, Shin-Ae;Kim, Sung-June;Lee, Sang-Hun;Park, Tai-Hyun;Byun, Kyung-Min;Kim, Sung-Guk;Shuler, Michael L.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.392-397
    • /
    • 2009
  • We designed a wavelength interrogation-based surface plasmon resonance (SPR) biosensor to detect avian influenza DNA (AI-DNA). Hybridization reactions between target AI-DNA probes and capture probes immobilized on a gold surface were monitored quantitatively by measuring the resonance wavelength in the visible waveband. The experimental results were consistent with numerical calculations. Although the SPR detection technique does not require the DNA to be labeled, we also evaluated fluorescently-labeled targets to verify the hybridization behavior of the AI-DNA. Changes in resonance were found to be linearly proportional to the amount of bound analyte. A wavelength interrogation-type SPR biosensor can be used for rapid measurement and high-throughput detection of highly pathogenic AI viruses.

Characteristics of Temperature Variation to the Piezoelectric Bimorph for Vortex Flowmeter (와류 유량센서용 압전 바이몰프의 온도변화에 따른 특성)

  • Lee, Guen-Taek;Kim, Hyung-Sun;Im, Jong-In
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.289-292
    • /
    • 2007
  • Although piezoelectric bimorph that is using as the sensor in medical and industrial measurement has large displacement, it has problems including efficiency in generating force, energy convergence, and response. Its application is being limited based on the change in resonance frequency with temperature. In this study, to overcome the disadvantages, PZT piezoelectric ceramics was prepared and produced a parallel type piezoelectric bimorphs. In addition, by using the finite element method. the configuration of piezoelectric bimorph was designed and the displacement of the bimorph based on applied electric pressure and the wave pattern were measured. By analyzing the resonance characteristics of the bimorph in the temperature range of $-60{\sim}80^{\circ}C$, an attempt was made to study the operational characteristics and temperature reliability of vortex flowmeter sensor. As a result, the resonance frequency of the bimorph was gradually increased with the temperature from $-60{\sim}80^{\circ}C$. The deflection of the bimorph was found to strongly depend on both the applied electric field waveform and the environmental temperature.

Optimal Design of an MRI Device Considering the Homogeneity of the Magnetic Field (자기장의 균일성을 고려한 자기공명장치의 최적설계)

  • Lee, Jung-Hoon;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.654-659
    • /
    • 2008
  • This paper is to suggest a concept design of the permanent magnet type magnetic resonance imaging (MRI) device based on the parameter optimization method. Pulse currents in the gradient coils will introduce the effect of eddy currents in the ferromagnetic material, which will worsen the quality of imaging. In order to equalize the magnetic flux in the MRI device for good imaging, the eddy current effect in the ferromagnetic material must be taken into account. This study attempts to use the design of experiment (DOE) and the response surface method (RSM) for equalizing the magnetic flux of the permanent magnet type MRI device using that the magnetic flux can be calculated directly using a commercial finite element analysis package. As a result, optimal shapes of the pole and the yoke of the PM type MRI device can be obtained. The commercial package, ANSYS, is used for analyzing the magnetic field problem and obtaining the resultant magnetic flux.