• Title/Summary/Keyword: Resolution of Image

Search Result 3,707, Processing Time 0.035 seconds

Investigation of the Super-resolution Algorithm for the Prediction of Periodontal Disease in Dental X-ray Radiography (치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘 적용 가능성 연구)

  • Kim, Han-Na
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.153-158
    • /
    • 2021
  • X-ray image analysis is a very important field to improve the early diagnosis rate and prediction accuracy of periodontal disease. Research on the development and application of artificial intelligence-based algorithms to improve the quality of such dental X-ray images is being widely conducted worldwide. Thus, the aim of this study was to design a super-resolution algorithm for predicting periodontal disease and to evaluate its applicability in dental X-ray images. The super-resolution algorithm was constructed based on the convolution layer and ReLU, and an image obtained by up-sampling a low-resolution image by 2 times was used as an input data. Also, 1,500 dental X-ray data used for deep learning training were used. Quantitative evaluation of images used root mean square error and structural similarity, which are factors that can measure similarity through comparison of two images. In addition, the recently developed no-reference based natural image quality evaluator and blind/referenceless image spatial quality evaluator were additionally analyzed. According to the results, we confirmed that the average similarity and no-reference-based evaluation values were improved by 1.86 and 2.14 times, respectively, compared to the existing bicubic-based upsampling method when the proposed method was used. In conclusion, the super-resolution algorithm for predicting periodontal disease proved useful in dental X-ray images, and it is expected to be highly applicable in various fields in the future.

Dose and Image Assessment according to Radiologic Factors Variation at Digital Humerus X-ray Examination (디지털 환경에서 Humerus 검사 시 촬영인자 변화에 따른 선량 및 화질 평가)

  • Kim, Seong Min;Hong, Seon Sook;Lee, Kwan Sup;Ha, Dong Yun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • Purpose : We aim at presenting the optimum radiologic factor through the evaluation of dose variation and of image quality through the use of a grid in Humerus examination and the change of dose because of the change of radiologic factor. Materials and Methods : We divided it in 3 cases: when using a grid or not and when using IP(Image Plate) in a digital system. Also, as fixing kVp to 70kVp it changed mAs, and fixing mAs to 10 it changed kVp, we put up resolution chart and Burger rose phantom on the acrylic phantom of 7cm (the same level of Humerus) to evaluate the dose and image. We used Image J program to evaluate the quantitative resolution of the obtained image, and made the qualitative evaluation and statistical analysis of the image saved in PACS for 20 radiologic technologist with more than 10 years of experience in order of evaluate its contrast. We used SPSS10(SPSS Inc. Chicago, Illinois) for statistical analysis. Results : We observed the analytic result of resolution by the change of kVp that it was $4.539dGycm^2$ in 60kVp and $757.472dGycm^2$ in 75kVp, which increased about 64.6% of dose, while for the resolution it had the pixel value 30.7% better with 851 in 60kVp than 651 in 75kVp. Also, we analyzed the result of resolution by the change of mAs that it was $3.106dGycm^2$ in 5mAs, and $12.470dGycm^2$ in 20mAs, which increased about 400% of dose, while for the resolution DR had 678 in 5mAs, and 724 in 20mAs that increased about 6.8% of resolution. We made the qualitative evaluation of contrast by the change of kVp that DR showed the higher quality than CR, but the contrast by the change of kVp had no special different at the moment of visual evaluation, nor statistically significant difference(P>0.05). We observed the qualitative evaluation of contraste by the change of mAs that the contrast increased as DR increased mAs, and had statistically significant difference(P<0.05). On the other hand, CR had no significant difference for more than 10mAs nor statistically significant difference(P>0.05). Conclusion : In case of some patients with radiographic exposure by the repeated examination such as emergent patient or Follow up patient, they are considered to try to limit the use of a grid, to set kVp under 65kVp in fixed mode, to select less than 10mAs and to reduce the possibility of patient being bombed.

  • PDF

An Evaluation For Spatial Resolution, Using A Single Target On A Medical Image (의료영상에서 단일 표적을 이용한 공간분해능 평가)

  • Lee, Kyung-Sung
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.631-636
    • /
    • 2016
  • Hitherto, spatial resolution has commonly been evaluated by test patterns or phantoms built on some specific distances (from close to far) between two objects (or double targets). This evaluation method's shortcoming is that resolution is restricted to target distances of phantoms made for test. Therefore, in order to solve the problem, this study proposes and verifies a new method to efficiently test spatial resolution with a single target. For the research I used PSF and JND to propose an idea to measure spatial resolution. After that, I made experiments by commonly used phantoms to verify my new evaluation hypothesis inferred from the above method. To analyse the hypothesis, I used LabVIEW program and got a line pixel from digital image. The result was identical to my spatial-resolution hypothesis inferred from a single target. The findings of the experiment proves only a single target can be enough to relatively evaluate spatial resolution on a digital image. In other words, the limit of the traditional spatial-resolution evaluation method, based on double targets, can be overcome by my new evaluation one using a single target.

Dose Reduction According to the Exposure Condition in Intervention Procedure : Focus on the Change of Dose Area and Image Quality (인터벤션 시 방사선조사 조건에 따른 선량감소 : 면적선량과 영상화질 변화를 중심으로)

  • Hwang, Jun-Ho;Jung, Ku-Min;Kim, Hyun-Soo;Kang, Byung-Sam;Lee, Kyung-Bae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.393-400
    • /
    • 2017
  • The purpose of this study is to suggest a method to reduce the dose by Analyzing the dose area product (DAP) and image quality according to the change of tube current using NEMA Phantom. The spatial resolution and low contrast resolution were used as evaluation criteria in addition to signal to noise ratio (SNR) and contrast to noise ratio (CNR), which are important image quality parameters of intervention. Tube voltage was fixed at 80 kVp and the amount of tube current was changed to 20, 30, 40, and 50 mAs, and the dose area product and image quality were compared and analyzed. As a result, the dose area product increased from $1066mGycm^2$ to $6160mGycm^2$ to 6 times as the condition increased, while the spatial resolution and low contrast resolution were higher than 20 mAs and 30 mAs, Spatial resolution and low contrast resolution were observed below the evaluation criteria. In addition, the SNR and CNR increased up to 30 mAs, slightly increased at 40 mAs, but not significantly different from the previous one, and decreased at 50 mAs. As a result, the exposure dose significantly increased due to overexposure of the test conditions and the image quality deteriorated in all areas of spatial resolution, low contrast resolution, SNR and CNR.

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

Using High Resolution Satellite Imagery for New Address System (도로명 및 건물번호 부여사업에서 고해상도 위성영상의 활용)

  • Bae, Sun-Hak;Kim, Chang-Hwan;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.109-121
    • /
    • 2003
  • The point of this research is the use of the high resolution satellite image for local government's new address system, as well as spatially field investigation support and base map error finding. Most local governments use scale 1/1,000 and 1/5,000 digital map for base map and field investigation. But field investigator's knowledge insufficiency and the lack of base map's currency make things too difficult from the beginning of the project. As the way of solving this problem, this research offers the use of the high resolution satellite image in new address system with cadence data of digital base map. Until now satellite image is not suitable for our situation because it has low resolution. But this problem was solved for 1m space resolution satellite image and it is being applied wider and wider. Now vector data and Raster data are integrated for complimenting of each weak point. In this study the use of the high resolution satellite image in new address system is expected to improve the quality of the results and reduce the expenses. In addition the satellite image can use local government's fundamental data.

  • PDF

A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons (다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구)

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.438-456
    • /
    • 2010
  • Iris recognition uses a unique iris pattern of user to identify person. In order to enhance the performance of iris recognition, it is reported that the diameter of iris region should be greater than 200 pixels in the captured iris image. So, the previous iris system used zoom lens camera, which can increase the size and cost of system. To overcome these problems, we propose a new method of enhancing the accuracy of iris recognition on low-resolution iris images which are captured without a zoom lens. This research is novel in the following two ways compared to previous works. First, this research is the first one to analyze the performance degradation of iris recognition according to the decrease of the image resolution by excluding other factors such as image blurring and the occlusion of eyelid and eyelash. Second, in order to restore a high-resolution iris image from single low-resolution one, we propose a new method based on multiple multi-layered perceptrons (MLPs) which are trained according to the edge direction of iris patterns. From that, the accuracy of iris recognition with the restored images was much enhanced. Experimental results showed that when the iris images down-sampled by 6% compared to the original image were restored into the high resolution ones by using the proposed method, the EER of iris recognition was reduced as much as 0.133% (1.485% - 1.352%) in comparison with that by using bi-linear interpolation

Fast and Accurate Single Image Super-Resolution via Enhanced U-Net

  • Chang, Le;Zhang, Fan;Li, Biao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1246-1262
    • /
    • 2021
  • Recent studies have demonstrated the strong ability of deep convolutional neural networks (CNNs) to significantly boost the performance in single image super-resolution (SISR). The key concern is how to efficiently recover and utilize diverse information frequencies across multiple network layers, which is crucial to satisfying super-resolution image reconstructions. Hence, previous work made great efforts to potently incorporate hierarchical frequencies through various sophisticated architectures. Nevertheless, economical SISR also requires a capable structure design to balance between restoration accuracy and computational complexity, which is still a challenge for existing techniques. In this paper, we tackle this problem by proposing a competent architecture called Enhanced U-Net Network (EUN), which can yield ready-to-use features in miscellaneous frequencies and combine them comprehensively. In particular, the proposed building block for EUN is enhanced from U-Net, which can extract abundant information via multiple skip concatenations. The network configuration allows the pipeline to propagate information from lower layers to higher ones. Meanwhile, the block itself is committed to growing quite deep in layers, which empowers different types of information to spring from a single block. Furthermore, due to its strong advantage in distilling effective information, promising results are guaranteed with comparatively fewer filters. Comprehensive experiments manifest our model can achieve favorable performance over that of state-of-the-art methods, especially in terms of computational efficiency.

Cascaded Residual Densely Connected Network for Image Super-Resolution

  • Zou, Changjun;Ye, Lintao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2882-2903
    • /
    • 2022
  • Image super-resolution (SR) processing is of great value in the fields of digital image processing, intelligent security, film and television production and so on. This paper proposed a densely connected deep learning network based on cascade architecture, which can be used to solve the problem of super-resolution in the field of image quality enhancement. We proposed a more efficient residual scaling dense block (RSDB) and the multi-channel cascade architecture to realize more efficient feature reuse. Also we proposed a hybrid loss function based on L1 error and L error to achieve better L error performance. The experimental results show that the overall performance of the network is effectively improved on cascade architecture and residual scaling. Compared with the residual dense net (RDN), the PSNR / SSIM of the new method is improved by 2.24% / 1.44% respectively, and the L performance is improved by 3.64%. It shows that the cascade connection and residual scaling method can effectively realize feature reuse, improving the residual convergence speed and learning efficiency of our network. The L performance is improved by 11.09% with only a minimal loses of 1.14% / 0.60% on PSNR / SSIM performance after adopting the new loss function. That is to say, the L performance can be improved greatly on the new loss function with a minor loss of PSNR / SSIM performance, which is of great value in L error sensitive tasks.

Fast Multiple Mixed Image Interpolation Method for Image Resolution Enhancement (영상 해상도 개선을 위한 고속 다중 혼합 영상 보간법)

  • Kim, Won-Hee;Kim, Jong-Nam;Jeong, Shin-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.118-121
    • /
    • 2014
  • Image interpolation is a method of determining the value of new pixel coordinate in the process of image scaling. Recently, image contents are likely to be a large-capacity, interpolation algorithm is required to generate fast enhanced result image. In this paper, fast multiple mixed image interpolation for image resolution enhancement is proposed. The proposed method estimates expected 12 shortfalls from four sub-images of a input image, and generates the result image that is interpolated in the combination of the expected shortfalls with the input image. The experimental results demonstrate that PSNR increases maximum value of 1.9dB, SSIM increases maximum value of 0.052, and the subjective quality is superior to any other compared methods. Moreover, it is known by algorithm running time comparison that the proposed method has been at least three times faster than the compared conventional methods. The proposed method can be useful for application on image resolution enhancement.