• 제목/요약/키워드: Resolution of Image

검색결과 3,684건 처리시간 0.033초

Single Image Super Resolution Reconstruction Based on Recursive Residual Convolutional Neural Network

  • Cao, Shuyi;Wee, Seungwoo;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.98-101
    • /
    • 2019
  • At present, deep convolutional neural networks have made a very important contribution in single-image super-resolution. Through the learning of the neural networks, the features of input images are transformed and combined to establish a nonlinear mapping of low-resolution images to high-resolution images. Some previous methods are difficult to train and take up a lot of memory. In this paper, we proposed a simple and compact deep recursive residual network learning the features for single image super resolution. Global residual learning and local residual learning are used to reduce the problems of training deep neural networks. And the recursive structure controls the number of parameters to save memory. Experimental results show that the proposed method improved image qualities that occur in previous methods.

  • PDF

A fast high-resolution vibration measurement method based on vision technology for structures

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Chae, Gyung-Sun;Park, Jae-Seok;Kim, Se-Oh
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.294-303
    • /
    • 2021
  • Various types of sensors are used at industrial sites to measure vibration. With the increase in the diversity of vibration measurement methods, vibration monitoring methods using camera equipment have recently been introduced. However, owing to the physical limitations of the hardware, the measurement resolution is lower than that of conventional sensors, and real-time processing is difficult because of extensive image processing. As a result, most such methods in practice only monitor status trends. To address these disadvantages, a high-resolution vibration measurement method using image analysis of the edge region of the structure has been reported. While this method exhibits higher resolution than the existing vibration measurement technique using a camera, it requires significant amount of computation. In this study, a method is proposed for rapidly processing considerable amount of image data acquired from vision equipment, and measuring the vibration of structures with high resolution. The method is then verified through experiments. It was shown that the proposed method can fast measure vibrations of structures remotely.

지역적 CPs 특성에 기반한 고해상도영상의 자동기하보정 (Automatic Registration of High Resolution Satellite Images using Local Properties of Control Points)

  • 한유경;변영기;한동엽;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.221-224
    • /
    • 2010
  • When the image registration methods which were generally used to the low medium resolution satellite images is applied to the high spatial resolution images, some matching errors or limitations might be occurred because of the local distortions in the images. This paper, therefore, proposed the automatic image-to-image registration of high resolution satellite images using local properties of control points to improve the registration result.

  • PDF

A Study on Super Resolution Image Reconstruction for Effective Spatial Identification

  • Park Jae-Min;Jung Jae-Seung;Kim Byung-Guk
    • Spatial Information Research
    • /
    • 제13권4호
    • /
    • pp.345-354
    • /
    • 2005
  • 초해상도 영상복원은 동일 지역을 촬영한 여러 장의 저해상도 영상을 이용하여 고해상도의 영상으로 재구성하는 영상처리 알고리즘 기법이다. 이 기법은 위성영상, 비디오 감시, 영상 강조 및 복원, 영상 모자이킹, 의료 영상과 같이 여러 장의 프레임 영상을 획득할 수 있는 분야에서 유용하게 사용될 수 있다. 본 연구에서는 지상을 촬영한 비디오 영상 열에 공간영역 초해상도 기법을 적용하였다. 실험에 사용된 영상은 높은 중복도로 촬영된 연속적인 비디오 영상에서 부표본화되었으며, 저해상도 영상과 고해상도 영상간의 관측 모델을 구성하고 초해상도 영상복원 기법중의 하나인 MAP 알고리즘을 적용하였다. MAP 기법을 이용하여 여러 장의 저해상도 영상에서 고해상도 영상으로 복원하였으며, 그 결과를 기존의 영상보간 방법들과 비교하였다.

  • PDF

잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법 (Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network)

  • 김동명;서재원
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1604-1611
    • /
    • 2020
  • 마이크로렌즈 어레이 기반의 카메라로 촬영된 라이트필드 영상은 낮은 공간해상도 및 각해상도로 인하여 실제 사용하기에는 많은 제약이 따른다. 고해상도의 공간해상도 영상은 최근 많이 연구되고 있는 단일 영상 초해상도 기법으로 쉽게 얻을 수 있으나 고해상도의 각해상도 영상은 영상사이에 내재된 시점차 정보를 이용하는 과정에서 왜곡이 발생하여 좋은 품질의 각해상도 영상을 얻기 힘든 문제가 있다. 본 논문에서는 영상 사이에 내재된 시점차 정보를 효과적으로 추출하기 위해서 팽창 합성곱 신경망을 이용하여 초기 특징맵을 추출하고 잔차 신경망으로 새로운 시점 영상을 생성하는 라이트 필드 각 초해상도 영상 기법을 제안한다. 제안하는 네트워크는 기존의 각 초해상도 네트워크와 비교하여 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • 대한원격탐사학회지
    • /
    • 제26권3호
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Comparison of Convolutional Neural Network Models for Image Super Resolution

  • Jian, Chen;Yu, Songhyun;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.63-66
    • /
    • 2018
  • Recently, a convolutional neural network (CNN) models at single image super-resolution have been very successful. Residual learning improves training stability and network performance in CNN. In this paper, we compare four convolutional neural network models for super-resolution (SR) to learn nonlinear mapping from low-resolution (LR) input image to high-resolution (HR) target image. Four models include general CNN model, global residual learning CNN model, local residual learning CNN model, and the CNN model with global and local residual learning. Experiment results show that the results are greatly affected by how skip connections are connected at the basic CNN network, and network trained with only global residual learning generates highest performance among four models at objective and subjective evaluations.

  • PDF

Object-oriented Information Extraction and Application in High-resolution Remote Sensing Image

  • WEI Wenxia;Ma Ainai;Chen Xunwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.125-127
    • /
    • 2004
  • High-resolution satellite images offer abundance information of the earth surface for remote sensing applications. The information includes geometry, texture and attribute characteristic. The pixel-based image classification can't satisfy high-resolution satellite image's classification precision and produce large data redundancy. Object-oriented information extraction not only depends on spectrum character, but also use geometry and structure information. It can provide an accessible and truly revolutionary approach. Using Beijing Spot 5 high-resolution image and object-oriented classification with the eCognition software, we accomplish the cultures' precise classification. The test areas have five culture types including water, vegetation, road, building and bare lands. We use nearest neighbor classification and appraise the overall classification accuracy. The average of five species reaches 0.90. All of maximum is 1. The standard deviation is less than 0.11. The overall accuracy can reach $95.47\%.$ This method offers a new technology for high-resolution satellite images' available applications in remote sensing culture classification.

  • PDF

Spatial resolution and natural image quality assessment evaluation of gamma camera image using pinhole collimator in lutetium-yttrium oxyorthosilicate scintillation detector

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2567-2571
    • /
    • 2023
  • Scintillator materials are widely used in the medical and industrial fields for imaging systems using gamma cameras. In this study, image evaluation is performed by modeling a gamma camera system based on a lutetium-yttrium oxyorthosilicate (LYSO) scintillation detector using a pinhole collimator that can improve the spatial resolution. A LYSO detector-based gamma camera system is modeled using a Monte Carlo simulation tool. The geometric concept of the pinhole collimator is designed using various magnification factors, and the spatial resolution is measured using the acquired source image. To evaluate the resolution, the full width at half maximum (FWHM) and natural image quality assessment (NIQE), a no-reference-based parameter, are used. We confirm that the FWHM and NIQE values decrease simultaneously when the diameter of the pinhole collimator increases. Additionally, we confirm that the spatial resolution improves as the magnification factor increases under the same pinhole diameter condition. Particularly, a 0.57 mm FWHM value is obtained using the modeled gamma camera system with a LYSO scintillation detector. In conclusion, our results demonstrate that a pinhole collimator with a LYSO scintillation detector is a promising gamma camera imaging system.

Effect of Bead Device Diameter on Z-Resolution Measurement in Tomosynthesis Images: A Simulation Study

  • Ryohei Fukui;Miho Numata;Saki Nishioka;Ryutarou Matsuura;Katsuhiro Kida;Sachiko Goto
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.63-71
    • /
    • 2022
  • Purpose: To clarify the relationship between the diameter of the simulated bead and the Z-resolution of the tomosynthesis image. Methods: A simulated bead was placed on a 1,024×1,024×1,024-pixel base image. The diameters were set to 0.025, 0.05, 0.1, 0.2, 0.3, 0.7, 1.0, and 1.3 mm. A bead was placed at the center of the base image and projected at a simulated X-ray angle range of ±45° to obtain a projected image. A region of interest was placed at the center of the bead image and the slice sensitivity profile (SSP) was obtained by acquiring pixel values in the z-direction. The full width at half maximum of the SSP was defined as the Z-resolution and the frequency response was obtained by the 1-D Fourier transform of the SSP. Results: Z-resolution increased with increasing bead diameter. However, there was no change in Z-resolution between 0.025 and 0.1 mm. The frequency response was similar to that of the Z-resolution, with a significant difference between 0.1 and 0.2 mm diameter. Conclusions: Z-resolution is dependent on the diameter of the bead, which should be selected considering the pixel size of the tomosynthesis image.