• Title/Summary/Keyword: Resistor thin-films

Search Result 47, Processing Time 0.026 seconds

A study on TCR characteristic of $TaN/Al_{2}O_{3}$ thin film resistors ($TaN/Al_{2}O_{3}$ 박막 저항소자 개발에 관한 연구)

  • Kim, I.S.;Cho, Y.R.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.82-85
    • /
    • 2002
  • In recent years, the tantalum nitride(TaN) thin-film has been developed for the electronic resistor and capacitor. In this papers, this study presents the surface profile and sheet-resistance property relationship of reactive-sputtered TaN thin film resistor processed by buffer of Ti and Cr on alumina substrate. The TCR properties of the TaN films were discussed in terms of reactive gas ratio, ratio of nitrogen, crystallization and thin films surface morphology due to annealing temperature. It is clear that the TaN thin-films resistor electrical properties are low TCR related with it's buffer layer condition. Ti buffer layer thin film resistor having a good thermal stability and lower TCR properties then Cr buffer expected for the application to the dielectric material of passive component.

  • PDF

Fabrication and Characterization of Ni-Cr Alloy Thin Films for Application to Precision Thin Film Resistors

  • Lee, Boong-Joo;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • Ni(75 wt.%)-Cr(20 wt.%)-Al(3 wt.%)-Mn(4 wt.%)-Si(1 wt.%) alloy thin films were prepared using the DC magnetron sputtering process by varying the sputtering conditions such as power, pressure, substrate temperature, and post-deposition annealing temperature in order to fabricate a precision thin film resistor. For all the thin film resistors, sheet resistance, temperature coefficient of resistance (TCR), and crystallinity were analyzed and the effects of sputtering conditions on their properties were also investigated. The oxygen content and TCR of Ni-Cr-Al-Mn-Si resistors were decreased by increasing the sputtering pressure. Their sheet resistance, TCR, and crystallinity were enhanced by elevating the substrate temperature. In addition, the annealing of the resistor thin films in air at a temperature higher than $300^{\circ}C$ lead to a remarkable rise in their sheet resistance and TCR. This may be attributed to the improved formation of NiO layer on the surface of the resistor thin film at an elevated temperature.

The Study on Thermal Stability of NiCr Thin-films Resistor (NiCr 박막 저항계의 열적 안정성에 관한 연구)

  • Kim, I.S.;Jeong, S.J.;Kim, D.H.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.168-170
    • /
    • 2001
  • The NiCr is an important material for present thin-film resistor application owing to its low TCR and thermal stability. In this work, the NiCr thin films were deposited on corning glass substrate by reactive magnetron sputtering and the annealing at temperatures range from 300 to $500^{\circ}C$ for 20 min in vacuum. X-ray, AFM, $R_s$(surface leakage current) have been used to study the structural and electrical properties of the NiCr thin films. The high precision NiCr thin films resistor with TCR(temperature coefficient of resistance) of less then 10 ppm/$^{\circ}C$ was obtained under in in-situ annealing at $300^{\circ}C$ on Cr buffer layer substrate. It is clear that the NiCr thin-films resistor electrical properties are low TCR related with it's annealing and buffer layer condition. NiCr thin film resistor having a good thermal stability and low TCR properties are expected for the application to the dielectric material of passive component.

  • PDF

A study on integrated device TaN/$Al_2O_3$ thin film resistor development (TaN/$Al_2O_3$ 집적화 박막 저항소자 개발에 관한 연구)

  • Kim, I.S.;Cho, Y.R.;Min, B.K.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1476-1478
    • /
    • 2002
  • In recent years, the tantalum nitride(TaN) thin-film has been developed for the electronic resistor, inductor and capacitor. In this papers, this study presents the surface profile and sheet-resistance property relationship of reactive-sputtered TaN thin film resistor processed by TaN(tantalum nitride) on alumina substrate. The TCR properties of the TaN films were discussed in terms of crystallization and thin films surface morphology due to annealing temperature. It is clear that the TaN thin-films resistor electrical properties are low TCR related with it's annealing temperature and ambient annealing condition. Respectively, at $300{\sim}400^{\circ}C$ on vacuum and nitrogen annealed thin film resistor having a goof thermal stability and lower TCR properties then as deposited thin films expected for the application to the dielectric material of passive component.

  • PDF

The Study on Thermal Stability of NiCr Thin-films (NiCr 박막의 어닐링과 열적안정성에 관한 연구)

  • Kim, I.S.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.81-84
    • /
    • 2004
  • The NiCr is an important material for present thin-film resistor application owing to its low TCR and thermal stability. In this work, the NiCr thin films were deposited on coming glass substrate by reactive magnetron sputtering and the annealing at temperatures range from 300 to $500^{\circ}C$ for 20 min in vacuum. X-ray, AFM, $R_s$(surface leakage current) have been used to study the structural and electrical properties of the NiCr thin films. The high precision NiCr thin films resistor with TCR(temperature coefficient of resistance) of less then $10\;ppm/^{\circ}C$ was obtained under in in-situ annealing at $300^{\circ}C$ on Cr buffer layer substrate. It is clear that the NiCr thin-films resistor electrical properties are low TCR related with it's annealing and buffer layer condition. NiCr thin film resistor having a good thermal stability and low TCR properties are expected for the application to the dielectric material of passive component.

  • PDF

Preparation of precision thin film resistor sputtered by magnetron (IC용 초정밀 박막저항소자의 제조와 특성연구)

  • 하홍주;장두진;조정수;박정후
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 1995
  • To develope a high precision TiAIN thin film resistor, TiAIN films were deposited on A1$_{2}$03 substrates by reactive planar magnetron cosputtering from Ti and Al targets in an Ar-N$_{2}$ atmosphere. The characteristics of the TiAIN thin film were controlled by changing of the R.F. power on Ti and Al targets, and the N$_{2}$ partial pressure. The high precision TiAIN thin film resistor with TCR(Temperature Coefficient of Resistance) of less than 10ppm/.deg. C was obtained under the R.F. power condition of 160(w)/240(w) to Ti and Al targets at the N$_{2}$ partial pressure of 7*10$^{-5}$ Torr. The composition of these films were investigated by XRD, SEM and EDS.

  • PDF

Electrical characteristic of RF sputtered TaN thin films with annealing temperature (스퍼터링법으로 제조된 TaN 박막의 열처리 온도에 따른 전기적 물성에 관한 연구)

  • 김인성;송재성;김도한;조영란;허정섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1014-1017
    • /
    • 2001
  • In recent years, The tantalum nitride(TaN) thin-film has been developed for the electronic resistor and capacitor. In this papers, The effect of thermal annealing in the temperature range of 300∼700$^{\circ}C$ on the sheet resistor properties and microistructure of tantalum nitride(TaN) thin-film deposited by RF sputtering was studied. XRD(X-ray diffractometer) and AFM were used to observe electrical properties and microstructrue of the TaN film and sheet resistance. The TCR properties of the TaN films were discussed in terms of annealing temperature, ratio of nitrogen, crystallization and thin films surface morphology due to annealing temperature. The leakage current of the TaN thin film annealed 400 $^{\circ}C$ was stabilized in the study. How its was found that the sheet resistance in the polycrystalline TaN thin film decreased with increasing the annealing temperature above 600 $^{\circ}C$ after sudden peak upen 400 $^{\circ}C$.

  • PDF

Multifunctional Thin Film Resistors Prepared by ALD for High-Efficiency Inkjet Printheads

  • Kwack, Won-Sub;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.126-126
    • /
    • 2012
  • In past decades, the themal inkjet (TIJ) printer has been widely used as one of the most well-known digital printing technology due to its low cost, and high printing quality. Since the printing speed of TIJ printers are much slower than that of laser printers, however, there has been intensive efforts to raise the printing speed of TIJ printers. One of the most plausible methods to raise the printing speed of TIJ printers is to adopt a page-wide array TIJ printhead. To accomplish this goal, the high efficiency inkjet heating resistor films should be developed to settle the high power consumption problem of a page-wide array TIJ printhead. In this study, we investigated noble metal based multicomponent thin film resistor films prepared by atomic layer deposition (ALD) for a high efficiency inkjet printhead. Design concept, preparation, material properties of noble metal based multicomponent thin films will be discussed in terms of mutlfunctionality.

  • PDF

Design and Synthesis of Multi Functional Noble Metal Based Ternary Nitride Thin Film Resistors

  • Kwack, Won-Sub;Choi, Hyun-Jin;Lee, Woo-Jae;Jang, Seung-Il;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.93-93
    • /
    • 2013
  • In recent years, multifunctional ternary nitride thin films have received extenstive attention due to its versatility in many applications. In particular, noble metal based ternary nitride thin films showed a promising properties in the application of Multifunctional heating resistor films because its good electrical properties and excellent resistance against oxidation and corrosion. In this study, we prepared multifunctional noble metal based ternary nitride thin films by atomic layer deposition (ALD) and plasma-enhanced ALD (PEALD) method. ALD and PEALD techniques were used due to their inherent merits such as a precise composition control and large area uniformity, which is very attractive for preparing multicomponent thin films on large area substrate. Here, we will demonstrate the design concept of multifunctional noble metal based ternary thin films. And, the relationship between microstructural evolution and electrical resistivity in noble metal based ternary thin films will be systemically presented. The useful properties of noble metal based ternary thin films including anti-corrosion and anti-oxidation will be discussed in terms of hybrid functionality.

  • PDF

Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films (YBCO 박막을 이용한 배전급 저항형 초전도 한류기)

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Kim, H.M.;Oh, I.S.;Shim, J.W.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF