• 제목/요약/키워드: Resistive superconducting fault current limiter

검색결과 125건 처리시간 0.023초

EMTDC Modeling Method of Resistive type Superconducting Fault Current Limiter

  • Taejeon Huh;Lee, Jaedeuk;Park, Minwon;Yu, In-Keun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.60-65
    • /
    • 2003
  • An effective modeling and simulation scheme of a resistive type Superconducting fault Current Limiter (SFCL) using PSCAD/EMTDC is proposed in this paper. In case of High Temperature Superconducting (HTS) resistive type fault current limiter current limiting is implemented by the ultra-fast transition characteristics from the superconducting (non-resistive) state to the normal (resistive) state by overstepping the critical current density. The states can generally be divided into three sub-states: the superconducting state the quench state and the recovery state respectively. In order to provide alternative application schemes of a resistive type SFCL, an effective modeling and simulation method of the SFCL is necessary. For that purpose, in this study, an actual experiment based component model is developed and applied for the simulation of the real resistive type SFCL using PSCAD/EMTDC. The proposed simulation scheme can be implemented to the grid system readily under various system conditions including sort of faults and the system capacity as well. The simulation results demonstrate the effectiveness of the proposed model and simulation scheme.

PSCAD/EMTDC를 이용한 저항형 초전도한류기의 계통적용분석 연구 (A Study on the Application Analysis of the Resistive type Superconducting Fault Current Limiters using PSCAD/EMTDC)

  • 허태전;방종현;배형택;박민원;유인근
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권1호
    • /
    • pp.25-31
    • /
    • 2005
  • Since the discovery of the high temperature superconductors many researches have been performed for the practical applications of superconductivity technologies in various fields. As results, significant progress has been achieved. Especially, Superconducting Fault Current Limiter (SFCL) offers an attractive means In limit fault current in power systems. HTS resistive type SFCL is based on the ultra fast transition from the superconducting (non resistive) state to the normal (resistive) state by overstepping the critical current density, In this study, the simulation method of resistive type superconducting fault current limiter using EMTDC is proposed and the developed EMTDC model of SFCL is applied to the modeled power network using the Parameters of real system.

계통 저항을 고려한 소용량 저항형 한류기의 초전도 선재 소모 길이 산출 연구 (Design Method for HTS Wire Length of the Small Scale Resistive Type Superconducting Fault Current Limiter Considering System Resistance)

  • 이우승;최석진;장재영;황영진;강재식;양동규;이해근;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권3호
    • /
    • pp.14-18
    • /
    • 2011
  • Electrical system is changing to smart grid which includes the distributed generations with reusable energy sources in these days. The distributed generations are environmentally friendly and have no concern with depletion problem. But dispatching distributed generations can cause an increase of the fault current. Resistive type super conducting fault current limiter is one of the candidates of solution for the large fault problem in smart grid. In this paper, a design method for the wire length of fault current limiter and the result of short circuit test for small scale modules considering system resistance are introduced.

저항형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석 (The Analysis of Current Limiting Characteristics Acceding to Fault Angles in the Resistive Type High-Tc Superconducting Fault Current Limiter)

  • 박충렬;임성훈;박형민;이종화;고석철;최효상;한병성;현옥배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.523-526
    • /
    • 2004
  • According to the continuous demand for power and the growth of electric power utilities, the electric power transmission capacity was increased. The increase of the electric power transmission capacity results in an increase of the fault current level a fault happened. So the superconducting fault current limiter(SFCL) has been reached as the countermeasure for the reduction of the fault current. In this paper, we investigate the fault currents characteristics of resistive type SFCL according to fault angles when AC power source applied. As the fault angles increase, the first peak value of fault current decreased lower. On the other hand, the power burden of SFCL increased.

  • PDF

고온초전도체를 이용한 차폐유도형 전류제한기의 설계 및 동작 특성해석 (The design and analysis of Operational characteristic of Shielded Inductive Fault Current Limiter using high-$T_c$ Superconducting)

  • 송재주;이재;임성훈;강형곤;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.339-342
    • /
    • 2001
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter(FCL) were simulated and analyzed to search for the parameter to determine FCL operation, Fault current limiting operation can be executed as resistive or inductive type, which is determined by iron-core radius and the number of the primary coil turns. It was considered through this paper that the operation of each was compared and examined about the merit of each mode.

  • PDF

1선 지락사고에 대한 배전급 저항형 초전도 한류기의 전류제한특성 (Current Limiting Characteristics of a Resistive SFCL for a Single-line-to-ground Fault in the 22.9 kV System)

  • 최효상;황시돌;현옥배
    • 한국전기전자재료학회논문지
    • /
    • 제14권6호
    • /
    • pp.505-510
    • /
    • 2001
  • We simulated the current limiting characteristics of a resistive superconducting fault current limiter (SFCL) for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles 0$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$, respectively, a resistive SFCL limited effectively the fault current to 2.27 kA in a half cycle without any DC components. The maximum quench resistance of an SFCL, 16Ω was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system, considering the operating cooperation of a protective relay and the current limiting performance of an SFCL.

  • PDF

저항형 고온 초전도 전류제한기의 저항변화 분석 (Anaysis of resistance variance of Resistive type high-Tc superconducting fault current limiter)

  • 박형민;최효상;임성훈;박충렬;한병성;정헌상;최창주;현옥배;정동철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.547-550
    • /
    • 2004
  • Superconducting fault current limiter(SFCL) is expected to be introduced into electric power system in future as an effective countermeasure for the increase of the short-circuit current due to the growth of the electric power system. SFCL has a merit that the fault current can be limited by the resistance generated when a superconductor transits from a superconducting state to a normal state without additional detecting device. In this paper, we investigated the resistance variance of resistive type SFCL and the fault current limiting characteristics due to the amplitude of source voltage. We could obtain the more effective fault current limiting characteristics of SFCL as the source voltage increased.

  • PDF

차폐유도형 고온초전도 전류제한기의 설계 및 특성시뮬레이션 (The Simulation on the Design and the Characteristic of Shielded Inductive $High-T_c$ Superconducting Fault Current Limiter)

  • 임성훈;최명호;이현수;한병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권3호
    • /
    • pp.173-178
    • /
    • 1999
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter(FCL) were simulated and analyzed. After determining parameters fo design for superconducting tube, iron core and primary coil, simple power system composed of shielded inductive FCL was simulated by the numerical analysis. The currents flowing under the fault condition could be limited below 50 A successfully. It was suggested that as the important factors of operational characteristics, the turns of primary coil and size of iron core play a major role for whether the shielded inductive SCFCL operated as inductive type or resistive type FCL.

  • PDF

Investigation on the Commercialization Issues of Resistive Type Superconducting Fault Current Limiters for Electric Networks

  • Park, Tae-Gun;Lee, Sang-Hwa;Lee, Bang-Wook
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.19-24
    • /
    • 2009
  • Among the various types of fault current limiters, superconducting fault current limiters could be the most preferable choice for high voltage electric power systems owing to the remarkable current limiting characteristics of superconductors. But, there have been no commercial superconducting fault current limiters which were installed into actual electric power systems until these days due to some remained technical and economical problems. Thus, in order to promote the development and application of the superconducting fault current limiters into real field, it is essential to understand the power utilities’ requirements for their networks and also suitable test method and some specifications should be prepared. This paper focuses on the matters of test requirements and standardization issues that should be prepared for commercialization of superconducting fault current limiters. The unique current limiting characteristics of superconducting fault current limiters were investigated and related other standards including circuit breakers, transformers, reactors, power fuse, and fused circuit breakers were compared to setup the basis of novel specification of superconducting fault current limiters. Furthermore, required essential test procedures for superconducting fault current limiters were suggested.

  • PDF

변류기(p-CT)를 적용한 YBCO 초전도 저항형 한류기의 ?치 특성 (Quench Behaviors of Superconducting YBCO film for Fault Current Limiters applying Protective Current Transformer)

  • 박권배;이방욱;강종성;오일성;현옥배
    • Progress in Superconductivity
    • /
    • 제5권2호
    • /
    • pp.128-131
    • /
    • 2004
  • The resistive superconducting fault current limiters (SFCLs) are very attractive devices for the electric power network. But they have some serious problems when the YBCO thin films were used for the current limiting materials due to the in homogeneities caused by manufacturing process. When the YBCO films have some inhomogeneities, simultaneous quenches are difficult to achieve when the fault current limiting units are connected in series for increasing operating voltage ratings. Magnetic field application is one of the prospective way of inducing simultaneous quenches far the series-connected resistive FCL components. Magnetic field was typically generated by the fault current thorough a coil, which is connected to components of the fault current limiter in series, leaving the problem, which provides significant inductance to the power line and suppresses critical current density of the superconducting components. In this article we investigated the possible application of the protective current transformer (p-CT), which is available current source to the magnetic coil. This system inductively coupled to the circuit, therefore, remarkably reducing impedance to the circuit. The current by the protective current transformer was directly fed to the coil, generating magnetic field large enough to reduce critical current density of the components. This successfully induced simultaneous quenches of the series-connected resistive FCL components.

  • PDF