• Title/Summary/Keyword: Resistive device

Search Result 141, Processing Time 0.028 seconds

Write Characteristics of Silicon Resistive Probe

  • Jung, Young-Ho;Kim, Jun-Soo;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.821-824
    • /
    • 2005
  • Probe storage is one of the strong candidates for future mobile storage device since it has potential of recording density over I $Tb/in^2$ with r/w speed over 100 Mbps. It also uses silicon-processing technology that suits the purpose of small form factor. In this paper, write characteristics of resistive probe that can rotate the field direction of PZT by field-induced resistance changes in a small resistive region at the apex of the tip will be presented. Also, the relationship between the size of tip and the available write width is investigated for different source bias conditions. For this study, two-dimensional computer simulation ($SILVACO^{TM}$) was performed. With optimum design, the width of the writing electric field can be smaller than 50nm

  • PDF

Analysis of a TRV influence according to application position of a SFCL (초전도 한류기 투입 위치에 따른 TRV 영향 분석)

  • Bang, Seung-Hyun;Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.91-92
    • /
    • 2008
  • The rating of a circuit breaker depends not only on the interrupting current but also on a transient recovery voltage (TRV). To achieve a successful interruption, the circuit breaker must withstand the TRV. A superconducting fault current limiter (SFCL) is a device that limits the fault current fast and effectively without having high impedance during normal operation of the power system. Therefore, we studied the influence of the TRV according to the application of a resistive type SFCL in distribution system. This paper analyses the influence of the TRV for various application position of the resistive SFCL. The distribution system and the resistive SFCL were modeled by using EMTP-RV (Electromagnetic Transient Program - Restructured Version)

  • PDF

A Measurement and Diagnosis for Resistive Leakage Current of ZnO Arrester Element (ZnO 피뢰기 소자의 저항분 누설전류 측정 및 분석)

  • Lee, Bok-Hee;Kang, Sung-Man;Park, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2155-2157
    • /
    • 1999
  • This paper describes a new measurement method of resistive current and the technique of deterioration diagnosis for ZnO element. The consequence of current increasing (resistive current) with time is the eventual attainment of a state of thermal instability that may lead to arrester failure. So, it is very important to measure a leakage current of ZnO arrester installed at on-state. For the high-precision and more reliability, an iron core, which has a very high relative permeability, was used for increasing detection sensitivity, and we also used the personal computer for the data storage and program and analysis. And we have verified the reliability and performance of the sensing device through several laboratory tests.

  • PDF

Convergence Study on Fabrication and Plasma Module Process Technology of ReRAM Device for Neuromorphic Based (뉴로모픽 기반의 저항 변화 메모리 소자 제작 및 플라즈마 모듈 적용 공정기술에 관한 융합 연구)

  • Kim, Geunho;Shin, Dongkyun;Lee, Dong-Ju;Kim, Eundo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.1-7
    • /
    • 2020
  • The manufacturing process of the resistive variable memory device, which is the based of neuromorphic device, maintained the continuity of vacuum process and applied plasma module suitable for the production of the ReRAM(resistive random access memory) and process technology for the neuromorphic computing, which ensures high integrated and high reliability. The ReRAM device of the oxide thin-film applied to the plasma module was fabricated, and research to improve the properties of the device was conducted through various experiments through changes in materials and process methods. ReRAM device based on TiO2/TiOx of oxide thin-film using plasma module was completed. Crystallinity measured by XRD rutile, HRS:LRS current value is 2.99 × 103 ratio or higher, driving voltage was measured using a semiconductor parameter, and it was confirmed that it can be driven at low voltage of 0.3 V or less. It was possible to fabricate a neuromorphic ReRAM device using oxygen gas in a previously developed plasma module, and TiOx thin-films were deposited to confirm performance.

EMG Activities of Core Muscles During Bridging Exercises With and Without a Pilates Resistive Device

  • Kim, Su-Jin;Yoo, Won-Gyu;Kim, Min-Hee;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • The purposes of this study were to compare core muscle activities with and without the use of Pilates resistive equipment during bridging exercises and to investigate the efficacy of a Pilates device. Fourteen healthy individuals (6 males, 8 females) between 20 to 26 years of age were examined. They were engaged in a bridging exercise with and without a magic circle. Three consecutive repetitions of each exercise were performed. Surface electromyography (sEMG) was used to measure the electrical activities of the right side internal oblique, the adductor longus, the multifidus, and the gluteus maximus muscles. Normalized EMG activities were compared using a paired t-test and the level of significance was set at =.05. The results showed that the EMG activities of the internal oblique (p=.0078), the adductor longus (p=.0007), and the gluteus maximus (p=.0001) muscles were significantly higher when using the magic circle during the Pilates bridging exercise. Also, statistically significant change existed in the multifidus muscle (p=.0106). The bridging exercise, combined with hip adduction using the magic circle, may enhance core stabilization. Therefore, using a magic circle during hip adduction combined with bridging exercise may be recommended usefully for individuals wanting to strength the core muscles. Further research is needed to access the nature of motor control of the Pilates mat exercises and to deliver exercise intervention for lower back pain patients.

  • PDF

The Leakage Current Analysis of ZnO Arrester Using Leakage Current Dete (피뢰기 누설전류 분석장치를 이용한 ZnO 피뢰기의 누설전류 변화 분석)

  • Kim, Young-Chun;Moon, Sun-Ho;Oh, Jung-Hwan;Kim, Jae-Chul;Lee, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1082-1084
    • /
    • 1998
  • In this paper, we developed a diagnosis device for ZnO arrester to detect on-line leakage current and acquire data from the power distribution system. The arrester is important power equipment used in power transmission and distribution systems to protect the generator and the main transformer from surge and overvoltage. First of all we developed a diagnosis device for ZnO arrester leakage current. And then we detect the total leakage current by the developed device without disconnecting the arrester ground wire and analysis the 3rd order harmonic by Fast Fourier Transform(FFT) to diagnose the ZnO arrester deterioration. With measuring the total current and the resistive current of power distribution system in operation, we analysis the trend of resistive current component in the total leakage current. We expect the result will be promote the method to protect electrical utility and customer from accident.

  • PDF

Electrical Characteristics of RRAM with HfO2 Annealing Temperatures and Thickness (HfO2 열처리 온도 및 두께에 따른 RRAM의 전기적 특성)

  • Choi, Jin-Hyung;Yu, Chong Gun;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.663-669
    • /
    • 2014
  • The electrical characteristics of RRAM with different annealing temperature and thickness have been measured and discussed. The devices with Pt/Ti top electrode of 150nm, Pt bottom electrode of 150nm, $HfO_2$ oxide thickness of 45nm and 70nm have been fabricated. The fabricated device were classified by 3 different kinds according to the annealing temperature, such as non-annealed, annealed at $500^{\circ}C$ and annealed at $850^{\circ}C$. The set and reset voltages and the variation of resistance with temperatures have been measured as electrical properties. From the measurement, it was found that the set voltages were decreased and the reset voltage were increased slightly, and thus the sensing window was decreased with increasing of measurement temperatures. It was remarkable that the device annealed at $850^{\circ}C$ showed the best performances. Although the device with thickness of 45nm showed better performances in the point of the sensing window, the resistance of 45nm devices was large relatively in the low resistive state. It can be expected to enhance the device performances with ultra thin RRAM if the defect generation could be reduced at the $HfO_2$ deposition process.

A Study of the Electrical Characteristics of WOx Material for Non-Volatile Resistive Random Access Memory (비-휘발성 저항 변화 메모리 응용을 위한 WOx 물질의 전기적 특성 연구)

  • Jung, Kyun Ho;Kim, Kyong Min;Song, Seung Gon;Park, Yun Sun;Park, Kyoung Wan;Sok, Jung Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.268-273
    • /
    • 2016
  • In this study, we observed current-voltage characteristics of the MIM (metal-insulator-metal) structure. The $WO_x$ material was used between metal electrodes as the oxide insulator. The structure of the $Al/WO_x/TiN$ shows bipolar resistive switching and the operating direction of the resistive switching is clockwise, which means set at negative voltage and reset at positive voltage. The set process from HRS (high resistance state) to LRS (low resistance state) occurred at -2.6V. The reset process from LRS to HRS occurred at 2.78V. The on/off current ratio was about 10 and resistive switching was performed for 5 cycles in the endurance characteristics. With consecutive switching cycles, the stable $V_{set}$ and $V_{reset}$ were observed. The electrical transport mechanism of the device was based on the migration of oxygen ions and the current-voltage curve is following (Ohm's Law ${\rightarrow}$ Trap-Controlled Space Charge Limited Current ${\rightarrow}$ Ohm's Law) process in the positive voltage region.

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

Electrical Switching Characteristics of Ge-Se Thin Films for ReRAM Cell Applications

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.343-344
    • /
    • 2012
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. [1-3] We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF