• Title/Summary/Keyword: Resistance strength

Search Result 4,785, Processing Time 0.032 seconds

Assessment of physical condition of old large Chionanthus retusus(Chinese Fringe Tree) using structural stability analysis (천연기념물 이팝나무 노거수 구조안정성 진단을 통한 물리적 생육상태 평가)

  • SON Jiwon;SHIN Jinho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.118-130
    • /
    • 2023
  • Decay or large cavities inside trees are the main causes of trees overturning and broken branches, and structurally weakened trees are more vulnerable to strong winds and heavy snowfall. Recently, as strong winds and typhoons increase due to climate change, the damage to human life and property due to trees overturning continues to increase, and cultural assets are in a similar situation. In particular, old big trees are structurally vulnerable to external shocks such as strong winds and heavy snowfall. This study was aimed at providing a scientific basis for preventive protection measures by conducting a structural stability diagnosis of seven retusa fringe trees designated as natural monuments. For the structural stability diagnosis, tree risk assessment and internal tree defect measurements were performed. As a result of the tree risk assessment, the Retusa Fringe Trees in Sinjeon-ri, Yangsan and Gwangyangeupsu had the highest risk of broken branches due to weak branch attachment strength. As a result of the diagnosis of internal defects of cross sections of measured trees, there were suspected cavities or severe decay in all except two trees of the population of Retusa Fringe Trees in Pyeongji-ri. Natural disasters due to climate change are increasing, and the scale is getting larger, so it is very important to preemptively manage large old trees through scientific structural safety diagnosis to manage trees that are vulnerable to environmental changes.

Evaluation on Laboratory Moisture Damage Characteristics of the Asphalt Mixtures using Indirect Tensile Test (간접인장시험을 이용한 아스팔트 혼합물의 실내 수분손상 특성 평가)

  • Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.243-248
    • /
    • 2008
  • Moisture damage of asphalt pavements can usually occur because of the loss of adhesion and cohesion between the asphalt binder and aggregate in the asphalt mixture due to presence of water. And this is one of the causes that is effect on the main distress of asphalt pavement. The objective of this study is to find out moisture damage characteristics of asphalt pavement. Effects of this study changes of the material properties and resistance characteristics of moisture damage on the asphalt mixtures under various temperatures and repeated immersion using indirect tensile test and modify Lottman test were evaluated during this study. The asphalt mixtures were produced using straight asphalt binder, SBS modified asphalt binder and aggregates. The material properties (resilient modulus, indirect tensile strength, failure energy and $DCSE_f$) of the asphalt mixtures were generally decreased with increasing to moisture damage caused by the number of repeated immersion. The decrease ratios of material properties by repeated immersion on SBS modified asphalt mixtures were lower than those of straight asphalt mixtures at all three test temperatures. As a conclusion, current criterion for evaluation moisture damage of asphalt mixtures is difficult for using distinction standard because of the limited evaluation criterion with one time immersion and single material property. Based on this research, to evaluate long term moisture damage on asphalt mixtures, material property tests of various kinds with repeated immersion test are considered.

Experimental Study on Flexural Behavior of RC Beams Strengthened with Prestressed CFRP Plate (CFRP판으로 프리스트레싱 보강한 RC 보의 휨거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kim, Hyung-Jin;Woo, Sang-Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.301-310
    • /
    • 2006
  • Carbon fiber reinforced polymer (CRFP) materials are well suited to the rehabilitation of civil engineering structures due to their corrosion resistance, high strength to weight ratio and high stiffness to weight ratio. Their application in the field of the rehabilitation of concrete structures is increased due to the vast number of bridges and buildings in need of strengthening. However, RC members, strengthened with externally bonded CFRP plates, happened to collapse before reaching the expected design failure load. Therefore, it is necessary to develop the new strengthening method to overcome the problems of previous bonded strengthening method. This problems can be solved by prestressing the CFRP plate before bonding to the concrete. In this study, a total of 21 specimens of 3.3 m length were tested by the four point bending method after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with various prestress levels ranging from 0.4% to 0.8% of CFRP plate strain. All specimen with end anchorage failed by a plate fracture regardless of the prestress levels while the specimen without end anchorage failed by the separation of the plate from the beam due to premature debonding. The cracking loads was proportionally related to the prestress levels, but the maximum loads of specimens strengthened with prestressed CFRP plates were insignificantly affected by the prestress levels.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Development and Applicability Evaluation of High Performance Poly-urea for RC Construction Reinforcement (RC 구조물 보강을 위한 고성능 폴리우레아의 개발 및 적용성 평가)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Hong-Shick;Heo, Gweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.169-176
    • /
    • 2010
  • Generally, poly-urea is widely used as waterproof coating material due to its superior adhesiveness, elongation capacity, and permeability resistance. In addition, it can be quickly and easily applied on structure surfaces using spray application. Since it hardens in about 30 seconds after application, its construction efficiency is very high and its usage as a special functional material is also excellent. However, currently, poly-urea is mostly used as waterproof coating material and the researches on its usage as a retrofitting material is lacking at best. Therefore, basic studies on the use of poly-urea as a general structural retrofitting material are needed urgently. The objective of this study is to develop most optimum poly-urea composition for structure retrofitting purpose. Moreover, the structural strengthening capacity of the developed poly-urea is evaluated through flexural capacity experiments on RC beams and RC slabs. From the results of the flexural test of poly-urea strengthened RC beam and slab specimens, the poly-urea and concrete specimen showed monolithic behavior where ductility and ultimate strength of the poly-urea strengthened specimen showed slight increase. However, the doubly reinforced specimens with FRP sheet and poly-urea showed lower capacity than that of the specimen reinforced only with FRP sheet.

Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes (붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가)

  • Park, Mi-Yun;Cho, Hyo-Nam;Cho, Taejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.647-657
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Cable Stayed Bridge, which is Prestressed Concrete Bridge consisted of cable and plate girders, based on the method of Working Stress Design and Strength Design. Component reliabilities of cables and girders have been evaluated using the response surface of the design variables at the selected critical sections based on the maximum shear, positive and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to obtain through Monte-Carlo Simulations. or through First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system consisting of cables and plate girder is changed into series connection system and the result of system reliability of total structure is presented. As a system reliability, the upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method, which calculates upper and lower bound failure probabilities.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

A Study of Statistic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 정적 거동 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.329-338
    • /
    • 2024
  • Purpose: This study verified the safety of the improved box-type girder behavior by comparing and evaluating the bending behavior results of a full-scale specimen based on the analytical behavior of the splice element PSC U-shaped girder with integrated tensioning systems. Method: Based on the results of the service and strength limit state design using the bridge design standard(limit state design method), the applied load of a 40m full-scale specimen was calculated and a static loading experiment using the four-point loading method was performed. Result: When the design load, crack load, and ultimate load were applied, the specimen deflection occurred at 97.1%, 98.5%, and 79.0% of the analytical deflection value. When the design load, crack load, and ultimate load were applied, the crack gauge was measured at 0.009~0.035mm, 0.014~0.050mm, and 6.383~5.522mm at each connection. Conclusion: The specimen behaved linear-elastically until the crack load was applied, and after cracks occurred, it showed strainhardening up to the ultimate load, and it was confirmed that the resistance of bending behavior was clearly displayed against the applied load. The cracks in the dry joints were less than 25% of grade B based on the evaluation of facility condition standard. The final residual deformation after removing the ultimate load was 0.114mm, confirming the stable behavior of the segment connection.