• Title/Summary/Keyword: Resistance of Cracking

Search Result 465, Processing Time 0.022 seconds

Evaluation of Reflection Cracking Resistance of Grid-Reinforced Asphalt Pavement Using Overlay Tester (Overlay Tester를 이용한 그리드 보강 아스팔트 포장의 반사균열 저항성 평가)

  • Yoo, Byung Soo;Seo, Woo Jin;Kim, Jo Soon;Park, Dae Wook
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : Reflection cracking has been one of the major causes of distress when asphalt pavement is laid on top of concrete pavement. This study evaluated the reflection cracking resistance of asphalt mixtures reinforced with asphalt embedded glass fiber and carbon fiber using a Texas Transportation Institute (TTI) overlay tester. METHODS : Different asphalt mixtures such as polymer-modified mastic asphalt (PSMA) and a dense graded asphalt mixture were reinforced with asphalt-embedded carbon fiber and glass fiber. For comparison purposes, two PSMA asphalt mixtures and one dense graded asphalt mixture were evaluated without fiber reinforcement. Two different overlay test modes, the repeated overlay test (R-OT) and monotonic overlay test (M-OT), were used to evaluate the reflection cracking resistance of asphalt mixtures at $0^{\circ}C$. In the R-OT test, the number of repeated load when the specimen failed was obtained. In the M-OT test, the tensile strength at the peak load and tensile strain were obtained. RESULTS : As expected, the fiber-reinforced asphalt mixture showed a higher reflection cracking resistance than the conventional nonreinforced asphalt mixtures based on the R-OT test and M-OT test. The dense graded asphalt mixture showed the least reflection cracking resistance and less resistance than the PSMA. CONCLUSIONS : The TTI overlay tester could be used to differentiate the reflection cracking resistance values of asphalt mixtures. Based on the R-OT and M-OT results, the carbon-fiber-reinforced asphalt mixture showed the highest reflection cracking resistance among the nonreinforced asphalt mixtures and glass-fiber-reinforced asphalt mixture.

Evaluation of HIC Resistance for Thick-wall Welded Pipe (후육 용접 강관의 HIC 저항성 평가)

  • Seo Jun Seok;Kim Hee Jin;Ryoo Hoi-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.34-39
    • /
    • 2005
  • It is required for the steel materials used in the sour environment to have sufficient resistance to hydrogen induced cracking(HIC). For line pipe steels, HIC resistance could be varied during pipe making process due to the large plastic deformation applied in the thick-wall pipe. In order to figure out such effect, HIC tests were performed not only in the plate condition but in the pipe condition and their results were compared in terms of cracking ratio. Test results demonstrated a detrimental effect of plastic deformation to HIC resulting in a substantial increase in the cracking ratio after pipe forming process. All of the cracks found in the pipe material were located in the outer layer of pipe where the tensile strain was resulted during pipe forming stage. In order to understand the HIC resistance of the pipe but in the plate condition, it was suggested to pre-strain the plate to some extent before the HIC test.

Prediction of Post-cracking Behavior of Synthetic Fiber Reinforced Concrete Beams (합성섬유 보강 콘크리트 보의 후균열 거동 예측에 관한 연구)

  • 오병환;김지철;박대균;한일영;김방래;유홍종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.587-592
    • /
    • 2002
  • Fiber reinforced concrete has been used for tunnel lining and rehabilitation of old structures. Recently, structural synthetic fiber was developed to overcome the corrosive properties of steel fibers. Fibers play a role to increase the tensile and cracking resistance of concrete structures. The Post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of the present study is to develop a realistic analysis method for post cracking behavior of synthetic fiber reinforced concrete members.

  • PDF

Cracking of Fiber-Reinforced Self-Compacting Concrete due to Restrained Shrinkage

  • Kwon, Seung-Hee;Ferron, Raissa P.;Akkaya, Yilmaz;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • Fiber-reinforced self-compacting concrete (FRSCC) is a new type of concrete mix that can mitigate two opposing weaknesses: poor workability in fiber-reinforced concrete and cracking resistance in plain SCC concrete. This study focused on early-age cracking of FRSCC due to restrained drying shrinkage, one of the most common causes of cracking. In order to investigate the effect of fiber on shrinkage cracking of FRSCC, ring shrinkage tests were performed for polypropylene and steel fiber-reinforced SCC. In addition, finite element analyses for those specimens were carried out considering drying shrinkage based on moisture diffusion, creep, cracking resistance of concrete, and the effect of fiber. The analysis results were verified via a comparison between the measured and calculated crack width. From the test and analysis results, the effectiveness of fiber with respect to reducing cracking was confirmed and some salient features on the shrinkage cracking of FRSCC were obtained.

Establishment of Failure Criteria of Repeated Direct Tensile Test to Evaluate Reflective Cracking Resistance of Asphalt Concrete Pavement (아스팔트 콘크리트 포장의 반사균열 저항성 평가를 위한 반복직접인장시험의 파괴기준 설정)

  • Lee, Bong Lim;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1109-1116
    • /
    • 2016
  • There are various test methods for evaluating the reflective cracking resistance of asphalt concrete pavement. Repeated direct tensile test is cheap and simple compared to the other traditional experimental methods. Determination of failure criteria is needed to apply a repeated direct tensile test. Various methods were used to determine the number of failure of repeated direct tensile test. The number of failure was defined as the time to reach 10% of the initial load, this method can be satisfied with specified tolerance of 10%. When the thickness of specimen is increased to 50 mm from 30 mm, the failure number is increased by 13.6 times. Thus, this result shows that the thickness of pavement is a big influence on the reflective cracking resistance. Reflective cracking resistance of asphalt concrete is decreased according to the increase in opening displacement. The repeated direct tensile test can be used as a reflective cracking resistance factor in pavement design, because it can evaluate the reflective cracking resistance according to the pavement thickness, opening displacement, material properties etc.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.

Laboratory Test and Evaluation to Characterize the Cracking Resistance of Asphalt Mixtures (아스팔트 혼합물의 균열 저항성 평가 연구)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.9-15
    • /
    • 2004
  • The cracking resistance of asphalt mixtures is generally evaluated by measuring a single parameter (i.e., Tensile strength, Stiffness). However, the use of a single parameter has been questioned in the evaluation of asphalt mixture cracking performance. The focus of this study was to clearly identify the key properties and characteristics associated with the cracking resistance of asphalt mixtures. Results of fracture, creep, and strength tests at multiple loading rates performed on the modified and unmodified mixtures showed that the mixture cracking resistance was primarily affected by the rate of micro-damage accumulation. This was reflected in the m-value, without affecting the fracture energy limit. It was also observed that the short loading time (elastic) stiffness alone could not differentiate the mixture cracking resistance of the mixtures. It was concluded that the key to characterize the cracking resistance of asphalt mixture is in the evaluation of the combined effects of creep and failure limits. It was also found that a residual dissipated energy parameter measured from Superpave IDT strength test gave the quick and useful way to distinguish the difference of cracking resistance of asphalt mixtures. Failure strain in the longer-term creep test appeared to be a useful parameter for evaluating the combined effects of creep and failure limits of asphalt mixtures.

  • PDF

The Effect of Primary Solidification Mode on Physical Properties of Austenitic Stainless Steels (오스테나이트계 스텐리스 강의 물성에 미치는 초정응고 형식의 영향)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.372-379
    • /
    • 1990
  • The effect of primary solidification phase on the solidification cracking sensitivity, corrosion resistance and toughness at cryogenic temperature was investigated for the austenitic stainless steel welds. The conclusions were summarized as follows; 1. Soldification crack sensitivity of austenitic stainless steel welds depends on the primary solidification mode. 2. Austenitic stainless steels were very susceptible to solidification cracking in case of solidification as primary ${\gamma}$ and immune when solidified as primary $\delta$. 3. When the ratio of Creq/Nieq is in the range of 1.46 to 1.55, the most resistance against solidification cracking was obtained. These results agreed well with the relationship between primary solidification mode, corrosion resistance and toughness at cryogenic temperature. 4. Optimum toughness, corrosion and solidification cracking resistance can be obtained when alloys having chemical compositions described above and solidifies as primary $\delta$ containing no ferrite at room temperature.

  • PDF

COLD CRACK SUSCEPTIBILITY OF HIGH STRENGTH WELD METAL

  • Kim, H. J.;B. Y. Kang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.266-272
    • /
    • 2002
  • This study reviews the factors controlling the weld metal cracking and shows the difference from those of HAZ cracking. It further reviews the recent progresses made in consumable design for improving the crack resistance in the high strength weld metal. Previously the controlling factors for weld metal cracking were regarded as weld metal strength, diffusible hydrogen and weld metal height. However an overall review presented in this article shows that the cold crack resistance can be improve significantly through the microstructural control and that an increase in tensile strength is not necessarily related to a decrease in the resistance to cold cracking.

  • PDF

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part II : 열영향부의 액화균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.46-55
    • /
    • 1997
  • This study has evaluated the liquation cracking behavior in the heat affected zone of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). 304 and 310S austenitic stainless steels were also included for comparison. In addition, the mechanism of liquation cracking in the HAZ was postulated based on the extensive microstructural examinations with SEM, EDAX and TEM. The liquation cracking resistance of Ni base alloys was found to be far inferior to that of austenitic stainless steels. The liquation cracking of Incoloy 825 and Inconel 718 was believed to be closely related with the Laves-austenite(Ti rich in 825 and Nb rich in 718) and MC-austenitic eutectic phases formed along the grain boundaries by constitutional liquation and incipient melting under rapid welding thermal contraction. Further, liquation cracking resistance of the HAZ was dependent not only upon the type and amount of low melting phases but also on the grain size.

  • PDF