• Title/Summary/Keyword: Resistance Mechanism

Search Result 1,447, Processing Time 0.038 seconds

Screw Transformation Mechanism of Screw-Propelled Robot for Efficient Void Detection in Grease Pipe (스크류 추진형 검측 로봇의 효율적인 검측을 위한 스크류 구조 변화 메커니즘)

  • Kim, Dongseon;Kim, Hojoong;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.172-177
    • /
    • 2022
  • In general, detection robots using ultrasonic sensors are equipped with sensors to protrude outward or to contact objects. However, in the case of a screw-propelled robot that detects the inside of a reactor tendon duct, if the ultrasonic sensor protrudes to the outside, resistance due to grease is generated, and thus the propulsion efficiency is reduced. In order to increase the propulsion efficiency, the screw must be sharp, and the sharper the screw, the more difficult it is to apply a high-performance ultrasonic sensor, and the detection efficiency decreases. This paper proposes a screw shape-changing mechanism that can improve both propulsion efficiency and detection efficiency. This mechanism includes an overlapped helical ring (OHR) structure and a magnetic clutch system (MCS), and thus the shape of a screw may be changed to a compact size. As a result, the Screw-propelled robot with this mechanism can reduce the overall length by about 150 mm and change the shape of the screw faster and more accurately than a robot with a linear actuator.

Experimental and statistical investigation of torque coefficient in optimized surface piercing propeller

  • Masoud Zarezadeh;Nowrouz Mohammad Nouri;Reza Madoliat
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.53-72
    • /
    • 2024
  • The interaction of the blade of surface-piercing propellers (SPPs) with the water/air surface is a physical phenomenon that is difficult to model mathematically, so that such propellers are usually designed using empirical approaches. In this paper, a newly developed mechanism for measuring the torque of SPPs in an open water circuit is presented. The mechanism includes a single-component load cell and a deformable torque sensor to detect the forces exerted on the propeller. Deformations in the sensor elements lead to changes in the strain gauge resistance, which are converted into voltage using a Wheatstone bridge. The amplified signal is then recorded by a 16-channel data recording system. The mechanism is calibrated using a 6-DoF calibration system and a Box-Behnken design, achieving 99% accuracy through multivariate regression and ANOVA. Finally, the results of performance tests on a 4-blade propeller were presented in the form of changes in the torque coefficient as a function of feed rate. The results show that the new mechanism is 8% more accurate than conventional empirical methods.

Early Detection of Intravenous Infiltration Using Multi-frequency Bioelectrical Impedance Parameters: Pilot Study

  • Kim, Jae-Hyung;Shin, Beum-Joo;Baik, Seung-Wan;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • In this study, bioelectrical impedance analysis, which has been used to assess an alteration in intracellular fluid (ICF) of the body, was applied to detect intravenous infiltration. The experimental results are described as follows. Firstly, when infiltration occurred, the resistance gradually decreased with time and frequency i.e., the resistance decreased with increasing time, proportional to the amount of infiltrated intravenous (IV) solution. At each frequency, the resistance gradually decreased with time, indicating the IV solution (also blood) accumulated in the extracellular fluid (ECF) (including interstitial fluid). Secondly, the resistance ratio started to increase at infiltration, showing the highest value after 1.4 min of infiltration, and gradually decreased thereafter. Thirdly, the impedance ($Z_C$) of cell membrane decreased significantly (especially at 50 kHz) during infiltration and gradually decreased thereafter. Fourthly, Cole-Cole plot indicated that the positions of (R, $X_C$) shifted toward left owing to infiltration, reflecting the IV solution accumulated in the ECF. The resistance ($R_0$) at zero frequency decreased continuously over time, indicating that it is a vital impedance parameter capable of detecting early infiltration during IV infusion. Finally, the mechanism of the current flowing through the ECF, cell membrane, and ICF in the subcutaneous tissues was analyzed as a function of time before and after infiltration, using an equivalent circuit model of the human cell. In conclusion, it was confirmed that the infiltration could be detected early using these impedance parameters during the infusion of IV solution.

Acibenzolar-S-Methyl(ASM)-Induced Resistance against Tobamoviruses Involves Induction of RNA-Dependent RNA Polymerase(RdRp) and Alternative Oxidase(AOX) Genes

  • Madhusudhan, Kallahally Nagendra;Deepak, Saligrama Adavigowda;Prakash, Harishchandra Sripathi;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • Tobamoviruses are the major viral pathogens of tomato and bell pepper. The preliminary results showed that Acibenzolar-Smethyl(ASM; S-methylbenzo(1,2,3) thiadiazole-7-carbothiate) pre-treatment to tomato and tobacco plants reduces the concentration of Tomato mosaic tobamovirus(ToMV) and Tobacco mosaic tobamovirus(TMV) in tomato and bell pepper seedlings, respectively. Pre-treatment of the indicator plant(Nicotiana glutinosa) with the ASM followed by challenge inoculation with tobamoviruses produced a reduced number and size of local lesions(67 and 79% protection over control to TMV and ToMV inoculation, respectively). In order to understand the mechanism of resistance the gene expression profiles of antiviral genes was examined. RT-PCR products showed higher expression of two viral resistance genes viz., alternative oxidase(AOX) and RNA dependent RNA polymerase(RdRp) in the upper leaves of the ASM-treated tomato plants challenge inoculation with ToMV. Further, the viral concentration was also quantified in the upper leaves by reverse transcription PCR using specific primer for movement protein of ToMV, as well as ELISA by using antisera against tobamoviruses. The results provided additional evidence that ASM pre-treatment reduced the viral movement to upper leaves. The results suggest that expressions of viral resistance genes in the host are the key component in the resistance against ToMV in the inducer-treated tomato plants.

  • PDF

Development of an Efficient Mechanical Inoculation Technique to Screen Barley Genotypes for Resistance to Barley mild mosaic virus Disease and its Comparison to Natural Infection

  • Jonson, Gilda;Park, Jong-Chul;Noh, Tae-Hwan;Kim, Mi-Jung;Hyun, Jong-Nae;Kim, Jong-Gon
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.348-352
    • /
    • 2006
  • Barley mild mosaic virus(BaMMV) is a soilborne Bymovirus vectored by root-infecting fungus, Polymyxa graminis. Mechanism of cultivar's resistance to BaMMV in field tests are difficult to assess since resistance could be either due to the virus or to P. graminis, or both. Whereas, available mechanical inoculation methods for BaMMV and other related viruses are labor intensive, give inconsistent results and generally result in low infection rates. Inoculation method using stick with gauze(SWG) was developed for BaMMV. The improved method proved to be simple, efficient, and reliable. The infected leaf tissues were preserved by drying in a frozen state under high vaccum(freeze dried barley infected leaves) to circumvent reduction of virus infectivity during storage. Five Korean barley cultivars were mechanically inoculated with BaMMV-infected sap by the improved method. Infection rates obtained were compared with natural infection. Cultivar Naehanssalbori showed resistance to BaMMV in the field trials but was found highly susceptible in the greenhouse tests by mechanical inoculation, indicating that the field resistance may be possibly due to resistance to P. graminis.

Decreased Interaction of Raf-1 with Its Negative Regulator Spry2 as a Mechanism for Acquired Drug Resistance

  • Ahn, Jun-Ho;Kim, Yun-Ki;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2011
  • Experiments were carried out to determine the role of Raf-1 kinase in the development of drug resistance to paclitaxel in v-H-ras transformed NIH 3T3 fibroblasts (Ras-NIH 3T3). We established a multidrug-resistant cell line (Ras-NIH 3T3/Mdr) from Ras-NIH 3T3 cells by stepwise increases in paclitaxel. Drug sensitivity assays indicated that the $IC_{50}$ value for drug-resistant Ras-NIH 3T3/Mdr cells was more than 1 ${\mu}M$ paclitaxel, 10- or more-fold higher than for the parental Ras-NIH 3T3 cells. Western blot and RT-PCR analysis showed that the drug efflux pump a P-glycoprotein were highly expressed in Ras-NIH 3T3/Mdr cells, while not being detectable in Ras-NIH 3T3 cells. Additionally, verapamil, which appears to inhibit drug efflux by acting as a substrate for P-glycoprotein, completely reversed resistance to paclitaxel in Ras-NIH 3T3/Mdr cell line, indicating that resistance to paclitaxel is associated with overexpression of the multidrug resistance gene. Interestingly, Ras-NIH 3T3/Mdr cells have higher basal Raf-1 activity compared to Ras-NIH 3T3 cells. Unexpectedly, however, the colocalization of Raf-1 and its negative regulator Spry2 was less observed in cytoplasm of Ras-NIH 3T3/Mdr cells due to translocation of Spry2 around the nucleus in the perinuclear zone, implying that Raf-1 may be released from negative feedback inhibition by interacting with Spry2. We also showed that shRNA-mediated knockdown of Raf-1 caused a moderate increase in cell susceptibility to paclitaxel. Thus, the results presented here suggest that a Raf-1-dependent pathway plays an important role in the development of acquired drug-resistance.

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)

  • Lee, Sang-Hyeob;Park, Do-Il
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.

Transgenic cucumber expressing the 54-kDa gene of Cucumber fruit mottle mosaic virus is highly resistance and protect non-transgenic scions from soil infection

  • Gal-On, A.;Wolf, D.;Antignus, Y.;Patlis, L.;Ryu, K.H.;Min, B.E.;Pearlsman, M.;Lachman, O.;Gaba, V.;Wang, Y.;Yang. J.;Zelcer, A.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.148.2-149
    • /
    • 2003
  • Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms with yellow mottling on leaves and fruits, and occasionally severe wilting of cucumber plants. No genetic source of resistance against this virus has been identified. The genes coding for the coat protein or the putative 54-kDa replicase were cloned into binary vectors under control of the SVBV promoter. Agrobacterium-mediated transformation was peformed on cotyledon explants of a parthenocarpic cucumber cultivar with superior competence for transformation. R1 seedlings were evaluated for resistance to CFMMV infection by lack of symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, 8 exhibited immunity, while only 3 resistant lines were found among a total of 9 CP-containing lines. Line 144 homozygous for the 54-kDa replicase was selected for further resistance analysis. Line 144 was immune to CFMMV infection by mechanical and graft inoculation, or by root infection following planting in CFMMV-contaminated soil. Additionally, line 144 showed delay of symptom appearance following infection by other cucurbit-infecting tobamoviruses. Infection of line 144 plants with various potyviruses and cucumber mosaic cucumovirus did not break the resistance to CFMMV. The mechanism of resistance of line 144 appears to be RNA-mediated, however the means is apparently different from the gene silencing phenomenon. Homozygote line 144 cucumber as rootstock demonstrated for the first time protection of a non-transformed scion from soil inoculation with a soil borne pathogen, CFMMV.

  • PDF

Efficacy and Underlying Mechanisms of Herbal Medicine for Polycystic Ovary Syndrome with Insulin Resistance: A Review of Animal Studies (다낭성난소증후군의 인슐린 저항성 치료에 대한 한약기전 및 빈용 본초 : 동물연구에 대한 체계적 문헌 고찰)

  • So-Yeong Yun;Ju-Young Sung;Yu-Min Kim;Su-Won Yu;Song-Baek Kim
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.37 no.2
    • /
    • pp.35-57
    • /
    • 2024
  • Objectives: This systematic review of animal studies was designed to examine the therapeutic mechanisms of herbal medicines of insulin resistance in Polycystic ovary syndrome and composition of them. Methods: Studies were searched from PubMed, CNKI and Medline up to February 2024. Data was extracted and organized as animal model characteristics, treatment period, experimental and control group settings, evaluation index of treatment, therapeutic mechanism of herbal medicine and Composition of prescription. Results: In the 15 studies finally selected, the herbal medicine used in the study was effective in regulating the insulin resistance index, sex hormones and blood lipid index and improving the histological morphology of the ovaries. The herbal medicine prescriptions used in each of the 15 papers were different, and Salviae Miltiorrhizae Radix (丹參), Wolfiporia cocos (茯苓) and Epimedii Herba (淫羊藿) were most frequently used herbs, 7 times. Conclusions: The results showed that herbal medicine is effective in treating insulin resistance in Polycystic ovary syndrome through several mechanisms. The herbs used in more than 4 papers had effects such as anti-inflammatory, anti-oxidant, estradiol hormone production control and glycolipid metabolism control. More diverse clinical studies on insulin resistance in Polycystic ovary syndrome are needed.

Status and Prospect of Lactic Acid Bacteria with Antibiotic Resistance (항생제 내성을 가진 유산균의 현황과 전망)

  • Chon, Jung-Whan;Seo, Kun-Ho;Bae, Dongryeoul;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.70-88
    • /
    • 2020
  • Lactic acid bacteria (LAB) form an essential part of the intestinal microbiota of the human body and possess the ability to stabilize the intestinal microbiota, strengthen immunity, and promote digestion as well as intestinal synthesis of vitamins, amino acids, and proteins. Hence, LAB are currently widely used in various products. However, due to the indiscriminate overuse of antibiotics in humans and livestock, bacterial resistance to antibiotics has been increasing rapidly, which has led to serious problems in the treatment of bacterial infections. Additionally, several reports have revealed that antibiotic-resistant LAB may infect people whose immune systems are not fully developed or whose immune systems are temporarily weakened. Therefore, it is imperative to consider the possibility of antibiotic-resistant LAB causing diseases in humans and animals, investigate the mechanism of action between antibiotics and LAB, and determine the relevant regulations for the safe use of LAB.