• Title/Summary/Keyword: Resistance Mechanism

Search Result 1,457, Processing Time 0.032 seconds

A Study on the Mechanism with the Electrode Ratio of Driving and Generation Part of a Disk-Type Piezoelectric Transformer (디스크형 압전변압기의 전극 면적비에 따른 구동 메카니즘에 관한 연구)

  • Lee, Jong-Pil;Chae, Hong-In;Jin, Woong-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.17-22
    • /
    • 2005
  • In this study, a disk-type piezoelectric transformer was fabricated. Its diameter was 50[mm] and thickness was 4.5[mm]. The driving and generating electrode with their gap of 1[mm] were fabricated on the top surface. But the common electrode was fabricated on the whole bottom surface. The electrode surface ratio of driving and generating part on the top surface was the range of 1.4:1 to 3:1. We investigated the electrical characteristics with the variation of its thickness and the electrode surface ratio of driving and generating part in the range of load resistance of 100${[\Omega]}\~70{[k\Omega]}$.. Form the experimental results, their influence on the set-up voltage ratio were investigated quantitively and qualitatively.

Wear of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites at the Room Temperature and an Elevated Temperature (알루미나 단섬유 보강 청동기지 복합재의 상온 및 고온 마모)

  • 최준호;허무영
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.45-52
    • /
    • 1995
  • The wear behavior of alumina short fiber reinforced tin-bronze matrix composites was studied at the room temperature and an elevated temperature. The effect of the composition of specimens and the variation of wear conditions on the wear properties was examined by a pin-on-disc type wear testing machine. The wear mechanism according to the compositon of specimens at various wear conditions was discussed by the observation of the microstructure and the analysis of the composition on the worn surfaces. A thicker oxide layer on worn surfaces led to a lower wear loss because of the lubricating effect of oxide layers between pin and disc. As the testing temperature was raised to 350$^{\circ}$C, the fiber reinforced composites exibited markedly increased wear resistance even at a higher applied load since the reinforcement of composites with alumina fibers was not affected to a large extent by raising temperature. The results obtained by AES and EDS analysis indicated that the oxide layer of the worn surfaces formed at 350$^{\circ}$C was proved as Fe-oxide. This was explained by the faster formation of Fe-oxide than Cu-oxide at 350$^{\circ}$C.

Sliding Wear Characteristics of plasma Sprayed $8\%Y_{2}O_3-ZrO_2$ Coating for Post-spray Heat Treatment

  • Chae Young-Hun;Kim Seock-Sam
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • Plasma ceramic spray that is applied on a machine part under severe work conditions has been investigated for tribological behavior. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce wear resistance and long life in severe conditions. The purpose of this study was to investigate the wear characteristics of $8\%Y_{2}O_3-ZrO_2$ coating, in view of the effect of post-spay heat treatment. The plasma-sprayed $8\%Y_{2}O_3-ZrO_2$ coating was studied to know the relationship between phase transformations and wear behavior related to post-spray heat treatment. Wear test was carried out with ball on disk type on normal loads of 50N,70N and 90N under room temperature. The phase transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings were observed by SEM. The tribological wear performance was discussed in the focusing of residual stress. Consequently, post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in the coating system has a significant influence on the wear mechanism of coating.

The Effect of Residual Stresses on Surface Failure and Wear (잔류응력의 표면파손과 마멸에 대한 영향)

  • Lee, Yeong-Je;Kim, Jin-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.677-682
    • /
    • 2002
  • Break-in is an intentional treatment to enhance the performance life of machinery parts and to maintain static friction behavior. Most studies on break-in have concerned only about surface conditions such as roughness or film formation. But the exact mechanism of break-in has not been found yet. Friction, scuffing behavior and wear of AISI 1045 were studied in relation to break-in and residual stress. The cylinder-on-disk type tribometer was used with the line-contact geometry. Scuffing tests were carried out using a constant load of 730N. In the break-in procedure the step load was applied from 100N to 200N. In this experiment, it was found that the break-in helps compressive residual stress to be formed well enough to enhance the scuffing life during the scuffing test. Specimens that had high compressive residual stress induced by shot-peening show better wear resistance than those were not shot-peened. Results of scuffing test, break-in procedure and wear amount in relation to residual stress have been discussed.

Genetic Polymorphisms in Drug Transporters and Regulatory Xenobiotic Receptors in Korean Population

  • Lee, Sang-Seop;Shin, Jae-Gook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2004.05a
    • /
    • pp.27-29
    • /
    • 2004
  • Drug transporters play an essential role in the absorption, distribution and elimination of clinical drugs, nutrients and toxicants. The importance of the transporters is exampled by therapeutic failure in cancer chemotherapy that is mainly caused by the overexpression of multidrug resistance (MDR)-related transporters. In addition, the transporters may involve in drug-drug interactions that lead to serious adverse drug responses and some transporters also contribute to inter-individual variation in drug responses. As an effort to understand the mechanism underlying the inter-individual variation of transporters activity, genetic and environmental factors influencing the expression or function of the transporters have extensively explored through last decade. Among them, genetic polymorphism of drug transporter encoding genes has generated much interest since the discovery of functional single nucleotide polymorphisms (SNP) of MDRl gene. Besides drug transporters, xenobiotic receptors also modulate drug disposition by regulating the transcription of drug metabolizing enzymes and drug transporters. Among many xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two most well characterized since these receptors show wide substrate specificities and regulate the expression of various enzymes involved in drug disposition. Recently, several functional genetic polymorphisms were reported in PXR coding gene. In the present study, genetic polymorph isms of two drug transporters, MDR1 and BCRP, and two xenobiotic receptors, PXR and CAR, were investigated in Korean population.

  • PDF

Future Cancer Therapy with Molecularly Targeted Therapeutics: Challenges and Strategies

  • Kim, Mi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.371-389
    • /
    • 2011
  • A new strategy for cancer therapy has emerged during the past decade based on molecular targets that are less likely to be essential in all cells in the body, therefore confer a wider therapeutic window than traditional cytotoxic drugs which mechanism of action is to inhibit essential cellular functions. Exceptional heterogeneity and adaptability of cancer impose significant challenges in oncology drug discovery, and the concept of complex tumor biology has led the framework of developing many anticancer therapeutics. Protein kinases are the most pursued targets in oncology drug discovery. To date, 12 small molecule kinase inhibitors have been approved by US Food and Drug Administration, and many more are in clinical development. With demonstrated clinical efficacy of bortezomib, ubiquitin proteasome and ubiquitin-like protein conjugation systems are also emerging as new therapeutic targets in cancer therapy. In this review, strategies of targeted cancer therapies with inhibitors of kinases and proteasome systems are discussed. Combinational cancer therapy to overcome drug resistance and to achieve greater treatment benefit through the additive or synergistic effects of each individual agent is also discussed. Finally, the opportunities in the future cancer therapy with molecularly targeted anticancer therapeutics are addressed.

The Study of Metal CMP Using Abrasive Embedded Pad (고정입자 패드를 이용한 텅스텐 CMP에 관한 연구)

  • Park, Jae-Hong;Kim, Ho-Yun;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.192-199
    • /
    • 2001
  • Chemical mechanical planarization (CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There hale been serious problems in CMP in terms of repeatability and deflects in patterned wafers. Especial1y, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasives and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using CeO$_2$is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method fur developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF

Load/unload Dynamics of Slider on Ramp for Various Ramp Shapes (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Lee, Yong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1248-1254
    • /
    • 2005
  • L/UL(Load/unload) mechanism has been widely used in SFF(Small form factor) HDD because L/UL technology has many advantages such as an increase of areal density, reduction of power consumption and improvement of shock resistance. In this system, the most important design goal is no slider-disk contact and fast air-hearing breaking during L/UL process. To do so, we should consider many design parameters related to L/UL system. The ramp shape is the most dominant component among parameters which dramatically affect the L/UL performance. This paper makes an advanced ramp model using ANSYS/LS-DYNA. Through this FE model, this paper investigates the effect of initial ramp slope and location of air-bearing breaking. From the experiment for three different ramps, we also verify that experimental results agree with simulation results. We conclude that the ramp design should have small ramp slope at the moment which a suspension tap contacts with ramp and large ramp slope after air-bearing breaking in order to improve L/UL Performance.

A Study on the Durable Press Finishing of Cotton Fiber Treated with Polycarboxylic Acid (폴리카르복시 산 처리 면섬유의 DP가공에 관한 연구)

  • 이찬민;최철민
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.58-67
    • /
    • 1997
  • PTCA(1,2,3-propanetricarboxylic acid) and BTCA(1,2,3-butanetetracarboxylic acid) are selected as new nonformaldehyde agents for ester crosslinking of cotton cellulose to replace the traditional DMDHEU reagent. A goal of this research is to propose unknown ester mechanism of cotton cellulose by PTCA or BTCA using crystal structure model suggested by Meyer and Takahashi. In pursuit of these goals, we have treated 100% cotton broad cloth with PTCA or BTCA and different catalysts. They were used with $NaH_2PO_2,\;NaH_2PO_4,\;Na_2HPO_4,\;NaH_2PO_2,\;Na_3PO_4,$ catalysts to produce nonformaldehyde fabric finishes. Treatments were applied to all cotton fabrics using a pad-dry -cure process. The esterfication of cotton treated with BTCA or PTCA was investigated using Fourier transform infrared(FT-IR) spectra and the breaking strength, abrasion retention and discoloration properties were determined to prove the durable finished fabrics. Patterns with respect to abrasion resistance were more complex. Because PTCA and BTCA add-ons were comparable, the data suggest that the more effective catalysts, $NaH_2PO_2$ and mixed phosphate $NaH_2PO_2/NaH_2PO_4$) are effecting either a great number of crosslinks in the cotton or producing crosslinks that differ in actual structure.

  • PDF

Effects of Tsunami Waveform on Energy Dissipation of Aquatic Vegetation (쓰나미 파형이 수중식생의 에너지소산에 미치는 영향)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The present study numerically investigated the influence of the waveform distribution on the tsunami-vegetation interaction using a non-reflected wave generation system for various tsunami waveforms in a two-dimensional numerical wave tank. First, it was possible to determine the wave attenuation mechanism due to the tsunami-vegetation interaction from the spatial waveform, flow field, vorticity field, and wave height distribution. The combination of fluid resistance in the vegetation and a large gap and creates a vortex according to the flow velocity difference in and out of the vegetation zone. Thus, the energy of a tsunami was increasingly reduced, resulting in a gradual reduction in wave height. Compared to existing approximation theories, the double volumetric ratio of the waveform increased the reflection coefficient of the tsunami-vegetation interaction by 34%, while decreasing the transfer coefficient and energy attenuation coefficient by 25% and 13%, respectively. Therefore, the hydraulic characteristics of a tsunami is highly likely to be underestimated if the solitary wave of the approximation theory is applied for the tsunami.