• Title/Summary/Keyword: Resistance Factor

Search Result 2,192, Processing Time 0.035 seconds

Relationship between Nutrients Intakes, Dietary Quality, and hs-CRP in Korea Metabolic Syndrome Patients - The 2015 Korea National Health and Nutrition Examination Survey - (한국 성인 남녀 대사증후군 집단의 영양소 섭취와 식사의 질 및 hs-CRP와 관련성 - 국민건강영양조사(2015년) 자료를 활용하여 -)

  • Kim, Mi Sung;Kim, Byung Sook;Lee, Jong Sin;Oh, Gyung Jae;Han, Soung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.3
    • /
    • pp.425-434
    • /
    • 2018
  • Metabolic syndrome is a risk factor for cardiovascular and type 2 diabetes. This study was conducted to examine the relevance between nutrition intake, meal quality, and high-sensitivity C-reactive protein in Koreans with metabolic syndrome. The 2,536 subjects, aged 19~64, who participated in 2015 National Nutrition Survey were included in this study. The 24-hour recall method was employed to analyze nutrition intake and dietary quality. Subjects were grouped into either the non-metabolic syndrome group (n=1,938) or the metabolic syndrome group (n=598). Total males and females were divided into 3 groups according to the high-sensitivity C-reactive protein (hs-CRP) level to study its relationship to metabolic syndrome and its components, including odds ratio (OR) and confidence interval (CI). Results showed the homeostasis model assessment of insulin resistance (HOMA-IR) value was higher in the metabolic syndrome group (3.37) than non-metabolic syndrome group (1.57) (p<0.001). In the Index of Nutrition Quality, males in the non-metabolic syndrome group showed higher niacin (p<0.05) than males in metabolic syndrome group. Females in the non-metabolic syndrome group had higher vitamin $B_1$ (p<0.01), vitamin $B_2$ (p<0.001), niacin (p<0.05), calcium (p<0.001), and phosphate (p<0.01). Female in the high hs-CRP group showed high OR in blood glucose component (OR 2.488, 95% CI: 1.269~4.879) and metabolic syndrome risk (OR 2.856, 95% CI: 1.292~6.314). Females in the middle hs-CRP group had high triglycerides component (OR 2.956, 95% CI: 1.920~4.551), compared to the low hs-CRP group. The study showed females with higher hs-CRP had a higher risk of metabolic syndrome.

Anisomycin, an Inhibitor of Protein Synthesis, Overcomes TRAIL Resistance in Human Hepatocarcinoma Cells via Caspases Activation and Bid Downregulation (Caspase 활성 및 Bid의 발현 저하를 통한 단백질 생성 억제제인 anisomycin의 인체간암세포에서 TRAIL 매개 apoptosis 유발의 활성화)

  • Jin, Cheng-Yun;Park, Cheol;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.769-776
    • /
    • 2014
  • Anisomycin, also known as flagecidin, is an antibiotic produced by Streptomyces griseolus that inhibits protein synthesis by binding to the ribosomal 28S subunit. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptotic cell death. TRAIL primarily causes apoptosis in tumor cells by binding to death receptors. Many human cancer cell lines are refractory to TRAIL-induced cell death. In this study, we investigated whether anisomycin could enhance TRAIL-mediated apoptosis in TRAIL-resistant human hepatocarcinoma Hep3B cells. Treatment with anisomycin and TRAIL alone did not reduce cell viability in Hep3B cells. However, in the presence of TRAIL, the anisomycin concentration dependently reduced the cell viability. Our results indicate that anisomycin sensitizes Hep3B cells to TRAIL-mediated apoptosis and that this occurs, at least partly, via caspase activation. Interestingly, Bid knockdown by small interfering RNA significantly reduced the induction of apoptosis in combination with anisomycin and TRAIL, indicating that anisomycin effectively acts to lower the threshold at which TRAIL-mediated truncated Bid triggers the mitochondrial-mediated apoptosis program in Hep3B cells. Therefore, the use of TRAIL in combination with anisomycin might provide an effective therapeutic strategy for the safe treatment of some TRAIL-resistant cancer cells.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

AN EXPERIMENTAL STUDY OF EFFECT OF INTERMAXILLARY FIXATION AND OCCUSAL SPLINT ON PULMONARY FUNCTION (악간고정과 교합 상이 호흡기능에 미치는 영향에 관한 실험적 연구)

  • Lee, Joong-Kyou;Kim, Kyung-Wook;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.175-181
    • /
    • 2002
  • Intermaxillary fixation and occusal splint are routine procedure for maxillofacial fracture and orthognathic surgery. When these methods could obstruct oral airway the patients who kept intermaxillary fixation and occusal splint in their mouth, are very difficult to breath after surgery. Nasal bleeding and pharyngeal edema due to nasotracheal intubation, residual effect of muscle relaxants, and anesthetic agent could be contributing factor of airway obstruction. In this study, pulmonary function test was evaluated before and after intermaxillary fixation, and intermaxillary fixation with occusal splint in 22 volunteers. The results were as follows 1. FVC, %FVC, $FEV_1$, $FEV_1%$, PEF, $PEF_{50}$, MVV without intermaxillary fixtion were 4.45L, 88%, 4.03L, 90.9%, 10.26L/s, 5.53L/s, and 136.14L/min, and with intermaxillary fixation were 3.51L, 68.67%, 3.06L, 69.39L, 6.52L/s, 3.94L/s, and 69.39L/min. The results with intermaxillary fixation and occusal splint were 2.15L, 42.41%, 1.71L, 38.81%, 2.83L/s, 1.74L/s, and 37.14L/min. 2. Compared with before and after intermaxillary fixation, all values of pulmonary function test were decreased and after intermaxillary fixation and intermaixillary fixation with occulasal splint, the results were decreased. 3. MVV and PEF were decreased significantly with interaxillary fixtion and occusal splint, and FVC was less decreased. It meant that intermaxillary fixation and occluasal splint induced reduction of respiratory flow significantly, but less reduction of respiratory volume. 4. Intermaxillary fixation and occulsal splint induced increase of airway resistance, decrease of expiratory volume and air flow. So severe respiratory difficulty could be seen to all volunteers who kept intermaxillary fixtion and occusal splint. 5. In classification of respiratory difficulty, intermaxillary fixation with occulsal splint induced complex respiratory difficulty more than intermaxillary fixation only did. From the above results, doctors who care patients kept intermaxillary fixation and occusal splint should be aware of respiratory depression caused by these treatment.

Removal/Recovery of VOCs Using a Rubbery Polymeric Membrane (Rubbery 고분가 막을 이용한 휘발성 유기화학물의 제거 및 회수)

  • Cha, Jun-Seok
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.173-181
    • /
    • 1996
  • Common volatile organic compounds(VOCs) such as toluene and methanol were removed successfully from N$_{2}$ using a novel silicone-coated hollow fiber membrane module. This novel membrane is a thin film composite(TFC) and was highly efficient in removing VOCs selectively from a N$_{2}$ stream. This membrane had some innate advantages over other silicone-based membrane in that the selective barrier was ultrathin(~1 $\mu$m) and the porosity of the polypropylene substrate was high which leads to a low permeation resistance. The substram was very strongly bonded to the coating layer by plasma polymerization and can withstand a very high pressure. A small hollow fiber module having a length of 25cm and 50 fibers could remove 96~99% of toluene as well as methanol vapors when the feed flow rate was up to 60cc/min. The percent removal of VOCs were even higher when the feed inlet concentration was higher. This process is especially suitable for treating streams having a low flow rate and high VOCs concentration. The permeances of VOCs through this membrane was in the range of $4~30 \times 10^{-9}gmol/sec \cdot cm^{2}\cdot cmHg$ for both toluene and methanol, and nitrogen permeance was between $3~9 \times 10^{-10}gmol/sec \cdot cm^{2} \cdot cmHg$. High separation factor between 10~55 for toluene/N$_{2}$ and 15~125 for methanol/N$_{2}$ were obtained depending on the feed flow rate ranges and feed VOCs concentration levels.

  • PDF

Thermal Stability and Mechanical Interfacial Properties of DGEBA/PMR-15 Blend System Initiated by Cationic Latent Thermal Catalyst (잠재성 양이온 개시제를 이용한 DGEBA/PMR-15 블렌드계의 열안정성 및 기계적 계면 특성에 관한 연구)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • In this work, the cure behaviors of the DGEBA/PMR-15 blends initiated by N-benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were performed in DSC and DMA analyses. And, the thermal stabilities were carried out by TGA analysis and their mechanical interfacial properties of blends were measured in the context of critical stress intensity factor ($K_{IC}$). As a result, the curing activation energy ($E_a$) determined from Ozawa's equation in DSC and the relaxation activation energy ($E_r$) from DMA were increased with increasing PMA-15 content. Also, the thermal stabilities obtained from the integral procedural decomposition temperature (IPDT) and the glass transition temperature ($T_g$) were highly improved with increasing the PMR-15 content, which were probably due to the high heat resistance. And, the $K_{IC}$ showed a similar behavior with $E_a$, which was attributed to the improving of the interfacial adhesion or hydrogen bondings between intermolecular chains.

  • PDF

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.

Pseudomonas aeruginosa Exotoxin A Induces Apoptosis in Chemoresistant YD-9 Human Oral Squamous Carcinoma Cell Line Via Accumulation of p53 and Activation of Caspases (항암제에 저항성을 가지는 YD-9 human oral squamous carcinoma cell line에서 Pseudomonas aeruginosa exotoxin A의 p53 단백질 누적과 caspase를 활성화 경로를 통해 유도된 세포자멸사)

  • Kim, Gyoo-Cheon;Gil, Young-Gi
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1047-1054
    • /
    • 2009
  • Oral squamous carcinoma (OSC) cells present resistance to chemotherapeutic agents-mediated apoptosis in the late stages of malignancy. Advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers. It was demonstrated here that Pseudomonas aeruginosa exotoxin A (PEA) significantly decreased the viability of chemoresistant YD-9 cells in the apoptosis mechanism. Apoptotic manifestations were evident through changes in nuclear morphology and generation of DNA fragmentation. PEA treatment induced caspase-3, -6 and -9 cleavage, and activation. These events preceded proteolysis of the caspase substrates poly (ADP-ribose) polymerase (PARP), DNA fragmentation factor 45 (DFF45), and lamin A in YD-9 cells. The reduction of mitochondrial membrane potential, release of cytochrome c and SmacjDlABLO from mitochondria to cytosol, andtranslocation of AlF into nucleus were shown. While p53, p21 and $14-3-3{\gamma}$ were upregulated, cyclin Band cdc2 were downregulated by PEA treatment. Taken together, PEA induces apoptosis in chemoresistant YD-9 cells via activation of caspases, mitochondrial events and regulation of cell cycle genes.

Korean Companies' Understanding of Carbon Pricing and Its Influence on Policy Acceptance and Practices (한국 기업의 탄소가격 정책에 대한 이해가 정책 수락 및 대응에 미치는 영향)

  • Suk, Sunhee
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.577-612
    • /
    • 2017
  • In response to climate change, Korea is attempting to shift the paradigm of energy and climate change policies by introducing carbon pricing based on market mechanisms. While policy adoption is proceeding at a rapid pace, the introduction of carbon pricing has been faced with great opposition from industry. This study measures to what extent Korean companies understand and accept carbon pricing, using data from a questionnaire survey covering energy consuming companies in 2012, when discussions between the government and such companies about the introduction of a domestic emission trading system were active. It further identifies how preparations and practices for carbon and energy management of companies correlate with their policy understanding and acceptance. The analysis results show that the surveyed companies indicate moderate understanding of, as well as resistance to carbon pricing policies, while appreciating the economic incentives and accepting the mandatory regulations in this phase. Companies' understanding is more related to characteristics, i.e., sector, size, etc. than external pressures. This study found that the extent to which companies understand policy is the essential factor in their policy acceptance and related practices. In particular, understanding of carbon policy significantly influences their managerial practices and voluntary activities for carbon and energy practices. This study substantiates the correlation between the level of policy understanding of a company and its carbon and energy practices - something that all countries seeking to introduce carbon pricing in response to climate change should consider prior to policy actually being implemented; in other words, enhancing the understanding of major policy subjects of the new instrument is a key policy strategy that should be elaborated as it will lead to better performance of companies and smoother policy implementation.

Antiviral Effect of Retro-2.1 against Herpes Simplex Virus Type 2 In Vitro

  • Dai, Wenwen;Wu, Yu;Bi, Jinpeng;Wang, Jingyu;Wang, Shuai;Kong, Wei;Barbier, Julien;Cintrat, Jean-Christophe;Gao, Feng;Jiang, Zhengran;Gillet, Daniel;Su, Weiheng;Jiang, Chunlai
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.849-859
    • /
    • 2018
  • Herpes simplex virus type 2 (HSV-2) infection has been a public health concern worldwide. It is the leading cause of genital herpes and a contributing factor to cervical cancer and human immunodeficiency virus (HIV) infection. No vaccine is available yet for the treatment of HSV-2 infection, and routinely used synthetic nucleoside analogs have led to the emergence of drug resistance. The small molecule $Retro-2^{cycl}$ has been reported to be active against several pathogens by acting on intracellular vesicle transport, which also participates in the HSV-2 lifecycle. Here, we showed that Retro-2.1, which is an optimized, more potent derivative of $Retro-2^{cycl}$, could inhibit HSV-2 infection, with 50% inhibitory concentrations of $5.58{\mu}M$ and $6.35{\mu}M$ in cytopathic effect inhibition and plaque reduction assays, respectively. The cytotoxicity of Retro-2.1 was relatively low, with a 50% cytotoxicity concentration of $116.5{\mu}M$. We also preliminarily identified that Retro-2.1 exerted the antiviral effect against HSV-2 by a dual mechanism of action on virus entry and late stages of infection. Therefore, our study for the first time demonstrated Retro-2.1 as an effective antiviral agent against HSV-2 in vitro with targets distinct from those of nucleoside analogs.