• Title/Summary/Keyword: Resistance Coupling

Search Result 248, Processing Time 0.027 seconds

Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment (플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질)

  • 임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.206-206
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

Surface Modification of Glass Fiber for Polymer Insulator by Plasma Surface Treatment (플라즈마 표면처리에 따른 고분자절연재료용 유리섬유의 표면개질)

  • 임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.206-212
    • /
    • 2003
  • It is hard to expect excellent electrical, mechanical and chemical properties from most of the composite materials presently used as insulators due to insufficient wettability property caused by the difference of interfacial properties between the matrix material and the reinforcer. Therefore, various interfacial coupling agents have been developed to improve the interfacial properties of composite materials. But if the wettable coupling agents are used outdoor for a long time, change in quality takes place in the coupling agents themselves, bringing about deterioration of the properties of the composite materials. In this study, glass surface was treated by plasma to examine the effect of dry interface treatment without coupling agent. It was identified that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate and dielectric property were improved.

Extraction Solution for the Coupling Coefficient at the Magnetically Coupled Wireless Power Transmission (자계 결합 무선 전력 전송에서의 결합 계수 추출 방법)

  • Kim, Gun-Young;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper presented the extraction solution for the coupling coefficient at the magnetically coupled wireless power transmission(WPT) system through the analysis of its equivalent circuit considering the loss. The conventional extraction solution using coupled mode theory is generalized employing the extracted solution considering the load resistance. Consequently, the measuring process of extracting coupling coefficient becomes convenient since the even/odd mode analysis is not necessary. Furthermore, the coupling coefficient obtained from the induced extraction method was in excellent agreement with the coupling coefficient obtained using the ratio of magnetic flux passing through the two loops. The extraction of the accurate coupling coefficient at the magnetically coupled WPT is an essential work to analyze and optimize the WPT system.

Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes (내오염성 나노여과막의 제조 및 특성)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2007
  • The primary objective of this study is to increase the extent of water flux and fouling resistance of nano-filtration or reverse osmosis membranes. This study was performed to investigate the effect of surface characteristics of silane coated membranes on modified fouling index. Commercial polyamide composite RO membrane (RE1812-LP) and NF membrane (ESNA4040-LF) were treated with silane coupling agents in ethanol at five different concentrations. The silane coupling reagent, aminopropylmethoxydiethoxysilane, contains one aminoalkyl and three alkoxy groups. The hydrophilic effect of aminoalkyl group of APMDES on the permeability and fouling resistance of the modified membrane was examined. The surfaces of the modified membranes were characterized by FE-SEM, contact angle analyzer, and zeta potentiometer in order to confirm successful sol-gel methods. The modified NF membranes showed significantly enhanced water flux and fouling resistance without a decrease in salt rejection in divalent ionic feed solution.

Effects of Silane-treated Silica on the Cure Temperature and Mechanical Properties of Elastomeric Epoxy (실란 커플링제로 처리된 실리카가 탄성에폭시의 경화온도 및 기계적 물성에 미치는 영향)

  • Choi, Sun-Mi;Lee, Eun-Kyoung;Choi, Seo-Young
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.147-156
    • /
    • 2008
  • In this work, epoxy/carboxyl-terminated butadiene acrylonitirile (EP/CTBN) composites were prepared by employing a reinforcing filler, silica treated with silane coupling agent in different ratio by dry and wet method. Their curing characteristics, surface free energy, interface morphologies and mechanical properties such as tensile strength and impact resistance were carefully investigated. Differential scanning calorimetry(DSC) results showed that curing temperature was lowered with the increase of silane coupling agent because of the increase of relative curing agent cotent by filling the pores of silica. Wet method was proved to be more effective for lowering curing temperature of EP/CTBN composite. In general, surface free energy and impact resistance were increased with the increase of silane coupling agent in this work. Tensile strength, however, was observed to be decreased at 4 wt% of silane coupling agent. It was found that the dry method was proved to be preferable for pretreatment of silica with coupling agent.

Dynamic Mechanical and Morphological Properties of Natural Rubber Vulcanizates Containing Fillers

  • Lee, Hae Gil;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.218-225
    • /
    • 2016
  • In order to examine correlation between silane coupling agent and activator which affects the physical properties of silica filled natural rubber compound, such as heat buildup, rebound property, dynamic mechanical and morphological properties were measured. With incorporation of silane coupling agent, $tan{\delta}$ at $0^{\circ}C$ was increased and at $60^{\circ}C$ was decreased, which resulted in improving of wet grip and rolling resistance. When silane coupling agent which is corresponding to 8~10% of silica was used, most favorable heat build up and $tan{\delta}$ was obtained. And also when activator was used, dispersibility of silica was improved as a result of reduction of reaggregation of silica.

Influence of Silane Coupling Agent on Properties of Filled Styrene-Butadiene Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.285-291
    • /
    • 2000
  • Influence of silane coupling agent, bis-(3-(triethoxisilyl)-propyl)-tetrassulfide, on cure characteristics and bound rubber content of filled styrene-butadiene rubber (SBR) compounds and on physical properties of the vulcanizates was studied. Carbon black-filled and silica-filled compounds were compared. Content of the bound rubber increased with increased content of the silane coupling agent and this trend was shown more clearly in the silica-filled compounds. Optimum cure time of the carbon black-filled compound increased with increase of the silane content, while that of the silica-filled one decreased. Cure rate of the carbon black-filled compound became slower as the silane content increased while that of the silica-filled one became faster. By increasing the silane content, the minimum torque decreased and the delta torque increased. Physical properties of the silica-filled vulcanizate were found to be improved by adding the silane coupling agent. However, for the carbon black-filled vulcanizates, the tensile strength and tear resistance decreased with increase of the silane content. The differences between the carbon black-filled and silica-filled compounds were explained by difference in the reactivities of the fillers with the silane.

  • PDF

H-Plane Coupling Between Rectangular Microstrip antennas (구형 마이크로스트립 안테나의 H-Plane 상호결합)

  • Ko, Ji-Whan;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.46-52
    • /
    • 1985
  • A theoretical study of mutual coupling effects between two H-plane coupled microstrip patch antennas is presented. The radiation resistance and slot capacitance of a single micro-strip patch are calculated. To investigate the mutual coupling effects, the even and odd mode characteristic impedance and effective dielectric constants are obtained using the coupled microstrip line model. The S-parameter matrix elements 511,512 are used to study the mutual coupling e(facts in S-band frequency ranges for various patch spacings. Theoretical results and measurements are in good agreement.

  • PDF

Effects of Ac Mutual Coupling According to Location of Auxiliary Electrodes In Measuring the Ground Impedance of Vertically or Horizontally Buried Ground Electrode (수직 또는 수평으로 매설된 접지전극의 접지임피던스 측정시 보조전극 위치에 따른 전자유도의 영향)

  • Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.86-92
    • /
    • 2009
  • In order to minimize ac mutual coupling, the auxiliary electrode are located at a right angle in measuring ground impedance. In case that the measurement space is limited, the alternative method is employed. At that time, it is necessary to investigate the measurement errors due to ac mutual coupling and earth mutual resistance in measuring the ground impedances. 'This paper presents the measurement accuracy according to the location of the current and potential auxiliary electrodes in measuring ground impedance of vertically or horizontally buried ground electrode. The measurement errors due to ac mutual coupling were evaluated Consequently, the effect of ac mutual coupling on the measurement accuracy for horizontally buried ground electrode is greater than that for vertically buried ground electrode. Measurement errors due to ac mutual coupling is the largest when the current and potential auxiliary electrodes are located in parallel. The 61.8[%] rule is inappropriate in measuring ground measurement. Theoretically, in case that the angle between the current and potential auxiliary electrodes is 90$[^{\circ}]$, there is no ac mutual coupling. If it is not possible to route the current and potential auxiliary electrodes at a right angle with limitation of measurement space, the location of these electrodes with an obtuse angle is preferred to that with an acute angle in reducing the measurement errors due to ac mutual coupling.

A Recursive Distance Relaying Algorithm Immune to Fault Resistance (고장저항의 영향을 최소화한 순환형 거리계전 알고리즘)

  • Ahn, Yong-Jin;Kang, Sang-Hee;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.259-261
    • /
    • 2001
  • An accurate digital distance relaying algorithm which is immune to the combined reactance effect of the fault resistance and the load current is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the apparent impedance, this algorithm uses iteratively the angle of an impedance deviation vector improved step by step. The impedance correction algorithm for ground faults uses a current distribution factor to compensate mutual coupling effect.

  • PDF