Effects of Silane-treated Silica on the Cure Temperature and Mechanical Properties of Elastomeric Epoxy

실란 커플링제로 처리된 실리카가 탄성에폭시의 경화온도 및 기계적 물성에 미치는 영향

  • Choi, Sun-Mi (Department of Applied Chemistry, Chongju University) ;
  • Lee, Eun-Kyoung (Department of Applied Chemistry, Chongju University) ;
  • Choi, Seo-Young (Department of Applied Chemistry, Chongju University)
  • 최선미 (청주대학교 응용화학과) ;
  • 이은경 (청주대학교 응용화학과) ;
  • 최세영 (청주대학교 응용화학과)
  • Published : 2008.09.30

Abstract

In this work, epoxy/carboxyl-terminated butadiene acrylonitirile (EP/CTBN) composites were prepared by employing a reinforcing filler, silica treated with silane coupling agent in different ratio by dry and wet method. Their curing characteristics, surface free energy, interface morphologies and mechanical properties such as tensile strength and impact resistance were carefully investigated. Differential scanning calorimetry(DSC) results showed that curing temperature was lowered with the increase of silane coupling agent because of the increase of relative curing agent cotent by filling the pores of silica. Wet method was proved to be more effective for lowering curing temperature of EP/CTBN composite. In general, surface free energy and impact resistance were increased with the increase of silane coupling agent in this work. Tensile strength, however, was observed to be decreased at 4 wt% of silane coupling agent. It was found that the dry method was proved to be preferable for pretreatment of silica with coupling agent.

본 연구에서는 실란 커플링제을 변량 배합하여 습식법과 건식법으로 실리카를 전처리하여 epoxy/carboxyl-terminated butadiene acrylonitirile (EP/CTBN) 복합체를 제조하였다. EP/CTBN 복합체의 경화특성 및 표면자유에너지, 인장강도 및 충격강도의 기계적 특성과 계면 특성을 건식법과 습식법에 따라 고찰하였다. Differential scanning calorimetry(DSC)의 결과 실란커플링제의 양이 증가함에 따라 실리카의 기공을 막아 경화제의 양을 증가시켜 경화온도가 감소되었으며, 건식법보다는 습식법이 EP/CTBN 복합체의 경화온도를 감소시킴을 알 수 있었다. 또한 실란커플링제의 양이 증가함 따라 표면자유에너지와 충경강도가 증가되었으나, 인장강도는 실란커플링제의 양이 4 wt%일 때 감소되었으며, 습식법보다는 건식법이 더 물성을 향상시킴을 알 수 있었다.

Keywords

References

  1. R. S. Baucr, "Epoxy Resin Chemistry", in Advanced in Chemistry Series, American Chemical Society, Washington DC, 1979
  2. H. Lee and K.nevile, Handbook of Epoxy resin, McGraw-Hill, New York, 1967
  3. S. C. Kim, "Applications and Trends in Conducting Polymers", Polym. Engi., 1994
  4. S. H. Joe, "Fabrication and Characteristics of Epoxy Resin-Type Based Neutron Shielding Materials", J. Materials Research Society of Korea, 8, 457 (1998)
  5. S. J. Kim, Y. S. Jeun, S. H Kang, and D. H. Park, J. Electrical Engineering & Technology, 7, 14 (2004)
  6. H. S. Yoon, J. "Curing of Epoxy Resins by Aminophosphazene Derivatives and Its Thermal Properties", Koean Society of Dyers and Finishers, 11, 7 (1999)
  7. A. Krystafkiewicz, B. Rager, M. Maik, and J. Szymanowski, "Formation of multihollow structures in crosslinked composite polymer particles", Coll.& Poly. Sci., 272, 1526 (1994) https://doi.org/10.1007/BF00664720
  8. Z. A. M. Ishak and A. A. Baker, "An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR)", Eur. Polym. J., 31, 259 (1995) https://doi.org/10.1016/0014-3057(94)00156-1
  9. S. Varughese and D. K. Tripathy, J. Appl. Polym. Sci., 44, 1847
  10. PPG Industries, Inc., Hi-Sil Bulletin, 41, (1971)
  11. D. M. Schwaber and F. Rodriguez, "Applications of an azide sulfonyl silane as elastomer crosslinking and coupling agent", Rubber Plast. Age, 48, 1081 (1967)
  12. M. P. Wagner, Rubber world, 164, 46 (1971)
  13. S. J. Park, W. B. Park, and J. R. Lee, "Thermal Stabilities and Cure Kinetics of DGEBA / Cycloaliphatic Epoxy Blend System", Polymer, 23, 2 (1999)
  14. A. W. Adamson, "Physical Chemistry of Surface", 5th ed., John Wiley, New York, 1990
  15. N. Nishiyama, T. Asakura, and K. Horie, "Condensation behavior of a sulane coupling agent in the presence of colloidal silica studied by 29Si and 13C NMR", J. Colloid and Inter. Sci., 124, 14 (1988) https://doi.org/10.1016/0021-9797(88)90319-0
  16. J. B. Moon, J. "Influence of Silane Coupling Agent Treatments on Physical Properties of Rubbery Materials", Elastomer, 36, 237 (2001)
  17. E. K. Lee, S. Y. Choi, and S. J. Park, "Stabilization of Chlorosulfonated Polyethylene(CSM) Rubber Emulsion with Surfactant Mixture", J. Elastomer., 34, 4 (2001)
  18. J. N. Israelachvili, "Intermolecular and Surface Force", 2en ed., Academic Press., San Diego, 1991
  19. F. Hoecker and J. Karger-Kocsism, "Surface energetics of carbon fibers and its effects on the mechanical performance of CF/EP composites", J. Appl. Polym. Sci., 59, 139 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1<139::AID-APP19>3.0.CO;2-V
  20. K. Ma, T. S. Chung, and R. J. Good, "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide", J Polym. Sci., Part B, 36, 2327 (1998) https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13<2327::AID-POLB8>3.0.CO;2-P
  21. F. M. Fowkes, "Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces", J. Phys. Chem., 66, 382 (1962) https://doi.org/10.1021/j100808a524
  22. D. K. Owens and R. C. Wendt, "Estimation of the surface free energy of polymers" J. Appl. Polym. Sci., 13, 1741 (1969) https://doi.org/10.1002/app.1969.070130815
  23. S. Wu, "polymer interface and Adhesion", Mercel Dekker, New York, 1982
  24. S. C. Han, Rubber Chem. Tech., 2, 35 (2001)
  25. S. Lee, "Satbilization and Chracterization of Chlorosulfonated Polyethylene Rubber Emulsion", J. Elastomer., 33, 185 (1998)