• Title/Summary/Keyword: Resin concrete

Search Result 304, Processing Time 0.033 seconds

Performance of Epoxy Resins for Repairing of Cracks in Concrete with Application Conditions (콘크리트 균열 보수용 에폭시의 시공조건에 따른 성능)

  • Lee, Chan-Young;Shim, Jae-Won;Kim, Hong-Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.813-816
    • /
    • 2004
  • This study was performed to investigate bonding performance of epoxy resins for repairing of cracks in concrete, as a part of project to establish quality control standard for epoxy resins. In the slant shear strength test for hard and soft type epoxy, hard type was higher about 3 times than soft one. From the results, it is thought that hard type is suitable for load carrying. Injection of epoxy resin in the notch made flexural strength increase about $47\%$ over the specimen that epoxy resin is not injected. There were no differences in bonding performances with viscosity. Application of epoxy resin on the wet concrete surface made slant shear strength decrease about $46\%$, but similar performance to the case of application on the dry surface appeared by using epoxy resin for wet condition.

  • PDF

Stress-Strain Properties of recycled-PET Polymer Concrete (PET 재활용 폴리머 콘크리트의 응력-변형률 특성)

  • Jo, Byung-Wan;Park, Jong-Hwa;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.316-319
    • /
    • 2004
  • Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete.

  • PDF

Properties of Reinforced Concrete Used for Disposal Container of Low-and Intermediate-level Radioactive Wastes (중.저준위 방사성 폐기물 처분용기용 보강 콘크리트의 특성)

  • 황의환;황선태;홍원표;조헌영
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 1988
  • Concrete used for radwaste container should have excellent properties such as mechanical strength, water-tightness, durability, etc. In order to improve such properties of ordinary portland cement concrete, superplasticizer, steel fiber, and/or epoxy resin were added to ordinary portland cement concrete respectively. Various concrete specimens were prepared and the physical properties of each concrete specimen were tested. From the experimental results, the properties of steel fiber and epoxy resin reinforced concrete were proved to be better qualified than others for low-and intermediate-level radwaste container.

  • PDF

Strength and Durability Properties of Recycled Polymer Concrete Using Unsaturated Polyester Resin and Recycled Aggregates (불포화폴리에스터 수지와 재생골재를 이용한 재생 폴리머 콘크리트의 강도 및 내구 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.97-103
    • /
    • 2009
  • This study was performed to evaluate the strength and durability properties of recycled polymer concrete using unsaturated polyester resin and recycled aggregates. Unsaturated polyester resin, natural and recycled aggregates and fly ash were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes (5-10 and 5-25 mm) and unit binder contents (10% and 12%). Tests for the compressive and flexural strength, freezing and thawing and durability for 20% sulfuric solution were performed. The compressive and flexural strength of recycled polymer concrete were in the range of 85~97 MPa and 17.9~20.8 MPa, respectively. The strengths of recycled polymer concrete using recycled aggregate have similar or slightly decreased compared to polymer concrete using natural aggregate. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of recycled polymer concrete were in the range of 0.13~1.42% and 94~99, respectively.

Physical Properties of Permeable Polymer Concrete (투수성 폴리머 콘크리트의 물리적 성질)

  • 최재진;황의환
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • In this paper, permeable polymer concretes with unsaturated polyester or vinylester resin content from 5 to 8 weight %, resin-filler ratio of 1 : 1, sand content from 0 to 15 weight % and crushed stone of size 2.5∼10 mm were prepared, and tested for compressive strength, flexural strength and water permeability. The effects of the resin and sand contents on the properties of permeable polymer concrete were discussed. It is concluded from the test results that increase in the strength and decrease in the coefficient of permeability of the permeable polymer concrete arc clearly observed with increasing the resin and sand contents. The permeable polymer concrete showed compressive strength in the range of 170 to 350 kgf/$\textrm{cm}^2$ and flexural strength in the range of 40 to 90 kgf/$\textrm{cm}^2$ at coefficient of permeability from 0.1 to 1.0 cm/sec in this experiment.

Examination of Concrete Hydration Heat According to the Application of Synthetic Resin Formwork (합성수지 거푸집 적용에 따른 콘크리트 수화열 검토)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.153-154
    • /
    • 2020
  • The purpose of this paper is to examine the characteristics of heat and hydration of concrete according to formwork materials. As a result of the experiment, it was found that there were no problems such as concrete heat loss and delay in hydration reaction due to the use of synthetic resin formwork.

  • PDF

Some Physical and Chemical Properties of Carbonized Wood Wastes(II)

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.6-15
    • /
    • 1998
  • A total of forty five-ply, 30- by 30-cm lauan and larch plywood sheets were manufactured in the laboratory using commercial urea and phenol resin adhesives; half of these sheets were treated with fresh concrete. Each sheet was carbonized for 2, 4, and 6hours at $400^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$, respectively, and their physical properties were measured. The yie1d of charcoal decreased as carbonization temperature and time increased. Charcoal yield was greater in plywood than in veneer, and slightly greater in plywood treated with concrete compared to untreated plywood. Plywood manufactured with phenol resin adhesive had higher pH, higher equilibrium moisture content (EMC), and greater adsorption of methylene-blue dye compared to plywood manufactured with urea resin. For concrete-treated plywood, pH was greater than 10 even when the sheets were carbonized for 2hours at $400^{\circ}C$. Although the EMC of the phenol resin plywood was higher than that of the urea resin plywood, EMC of the phenol resin was lower than that of the urea resin. The larch phenol resin plywood that was carbonized for 6 hours at $750^{\circ}C$ adsorbed more methylene-blue than did the commercia1 wood-based activated charcoal as a result of total pore volume and surface area.

  • PDF

A Study on the Safety and Comfort of Pedestrians according to the Type of Sidewalk Pavement (보도포장의 종류에 따른 보행자의 안전성 및 쾌적감에 대한 연구)

  • Choi, Jae Jin
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.66-71
    • /
    • 2015
  • Safety, resilience and comfort of pedestrian were assessed by the British Pendulum Test and SB/GB factor test at 8 kinds of sidewalk pavement. Sidewalk paving materials were normal concrete, porous concrete, concrete block, soil concrete, asphalt, rubber chip/resin mixture, wood chip/resin mixture and floor tile. In addition, a survey was conducted to investigate the perception of pedestrians on the sidewalk paving material. As a result, while the skid resistance value was measured in the most 60BPN above, the floor tile showed a low value of about 30BPN. The ratios of SB factor to GB factor of the elastic pavements(rubber/resin mixture and wood chip/resin mixture) appeared to be relatively large when compared with those of the conventional sidewalks. The survey showed that respondents perceived as more safe and comfortable elastic pavements compared to conventional pavements. Approximately 50% of respondents answered that hardened soil pavement was the most environmentally friendly.

Study on the Manufacture of Resin Concrete of Machine Tool Bed with High Damping Capacity (고감쇠 레진 큰크리트 공작기계 베드 제작에 관한 연구)

  • 서정도;방경근;이대길;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.429-433
    • /
    • 1997
  • High-speed and high-precision are trendy at present in the development of machine tools which are required for various fields of industry such as semiconductor, automobde, mold fabricat~on and so on. High damping capacity of the structure is an iniportant factor to ohtain precise products without vibration during manufacturing caused by rapid trarisportatm and rotation of spindle unit Resin concrete have high potential for machine tool bed due to its good damping characteristics. In this study, the statlc and dynamic characteristics of the machine tool bed were analysed. Also, the hybrid machine tool bed, made of steel base and polyester resin concrete material, was manufactured and its good dynamic characteristics were proved experimentally.

  • PDF

An Experimental Study on the Compressive Strength of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도에 관한 실험적 연구)

  • Jeong, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.54-55
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Securing the performance of reinforced concrete is directly connected to the durability and longevity of the building. One of the major factors that deteriorate the durability of concrete is harmful ion. Recently, the quality and improvement method of reinforced concrete for penetration of harmful ion has been studied. In this study, the bead type ion exchange resin is substituted for 0%, 3%, and 6% of the fine aggregate volume in the mortar. The speciments underwent underwater curing and were checked for compressive strengths of 3 days and 28 days. From the results of compressive strength, it can be seen that the higher the substitution ratio of the ion exchange resin, the lower the early strength and long-term strength development, especially the early strength development.

  • PDF