• Title/Summary/Keyword: Resin Rich Layer

Search Result 7, Processing Time 0.019 seconds

The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures (섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • Cylindrical composite lattice structures are manufactured by filament winding process. The fiber volume fraction non-uniformity and resin rich layers that can occur in the manufacturing process affect the stiffness and strength of the structure. Through the cross-section examination of the hoop and helical ribs, which are major elements of the composite lattice structure, we observed the fiber volume fraction non-uniformity and resin rich layers. Based on the results of the cross-section examination, the stiffness of the ribs was analyzed through the experimental and theoretical approaches. The results show that the fiber volume fraction non-uniformity and resin rich layers have an obvious influence on the rib stiffness of composite lattice structure.

Electrical characteristics of class-F groundwall insulation tapes for stator windings (고정자 권선용 F종 주절연 테이프의 전기적 특성)

  • Kim, Tae-Hee;Kang, Myung-Guk;Lee, Jai-Kwun;Son, Sam-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1679-1681
    • /
    • 2004
  • Class-F and B resin-rich type insulating tapes are generally used for the ground wall insulations of respective air-cooled and water-cooled stator windings in larger turbine generators. In this paper, their electrical properties coupled with aging times in higher temperature than designed one in normal condition were experimentally investigated and the results of two comparative tests were presented on the existing class-F resin-rich type tape and a developed one after curing. The resin-rich tapes currently used arc composed of six and a half 3-layer sheets that arc structured with mica paper, the top and bottom supports of it respectively, and the epoxy resin to bind them tightly. The results for breakdown voltage and strength on the cured specimens were presented, which were composed of the unaged, the aged accelerated for one, two, and three thousand hours at 180 $^{\circ}C$. The surface and volume resistivities on them were measured and the results are also presented to make a comparative test for the initial electrical characteristics.

  • PDF

Stress Intensity Factors for a Center Cracked laminated Composites under Shear Loading (전단하중을 받는 복합 적층재 중앙균열의 응력확대계수)

  • 오재협;김성호;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.838-848
    • /
    • 1992
  • The objective of the study is to provide a theoretical tools for analyzing the fracture of leyered composites with a center crack. It is assumed that the composite is composed of successive accumulation of the fiber layer and resin layer with the fiber layer being perfectly bonded to the resin layer except the region of a center crack. In-plane shear loading (Mode II) and the anti-plane shear loading (Mode III) are considered separately. Boundary value problems are formulated by using a plane theory of elasticity and governing equations are reduced to a Fredholm integral equation of a second kind. The equation is solved numerically and the stress intensity factors are obtained. The normalized Mode II and Mode III stress intensity factors are evaluated for various combinations of material properties and for various geometrical parametes.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Flexural performance of RC beams incorporating Zinc-rich and epoxy bonding coating layers exposed to fire

  • Tobbala, Dina E.;Rashed, Ahmed S.;Tayeh, Bassam A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.163-172
    • /
    • 2022
  • Zinc-rich epoxy (ZRE) is used to overcome corrosion problems in reinforced concrete (RC) beams and coat steel rebars to protect them from humidity and chlorides. An extra coating layer of Sikadur-31 epoxy (SDE) is utilised to increase bond strength because the use of ZRE reduces the bond strength between concrete and steel rebars. However, the low melting point of SDE indicates that concrete specimens are vulnerable to fire. An experimental investigation on flexural performance of RC beams incorporating ZRE-SDE coating of steel rebars that were destroyed by fire is performed in this study. Twenty beams of five concrete mixes with different cementitious contents were tested to compare fire exposure for coated and uncoated rebars of the same beams at room temperature and determine the optimal cementitious content. Scanning electron microscopy (SEM) was also applied to investigate characteristics of fired mixture samples. Results showed that the use of SDE-ZRE at room temperature improves flexural strengths of the five mixes compared with uncoated rebars with percentages ranging from 8.5% to 12.3%. All beams with SDE-ZRE lost approximately 50% of their flexural strength due to firing. Moreover, the mix incorporating SF (silica fume) of 15% and cement content of 400 kg/m3 introduces optimum behaviour compared with other mixes. All results were supported and verified by the SEM analysis and compressive strength of cubic specimens of the same mixes.

A STUDY ON THE SURFACE ROUGHNESS AND REFLECTIVITY AFTER POLISHING OF THE MICROFILL, HYBRID COMPOSITE RESINS (Microfill, Hybrid 복합레진 연마 후 표면조도와 광반사율에 관한 연구)

  • Moon, Anne-Jay;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.513-533
    • /
    • 1994
  • The smooth surface after polishing of composite resin contributes to the patient's comfort, and appearance and longevity of the restoration. This study was performed for the quantitative analysis of the effects of the various finishing and polishing instruments on the surface roughness and reflectivity of the microfill, and hybrid composite resins. Cylindrical specimens 2mm thick and 10mm in diameter of Silux Plus, Durafill VS ; Z100, Prisma TPH, Brilliant, and Herculite XR composite resin were polymerized under the matrix strip. 18 specimens for each composite resin materials were divided into 6 groups ; 5 experimental groups were abraded with # 600 sand paper to remove resin-rich layer, except control. Thereafter, using diamond bur(Mani Dia-Burs), carbide bur(E. T. carbide set 4159), rubber point(Composite polishing kit), aluminum-oxide disk(Sof-Lex disk), polishing paste(Enhance system) ; each specimen was polished to its best achievable surface according to manufacturer's directions. Final polished surfaces were evaluated for the surface roughness with profilometer(${\alpha}$-step 200, Tencor instruments, USA) and for the reflectivity with image analyser(Omniment Image Analyser, Buehler, USA). The results were as follows. 1. Polishing paste or aluminum-oxide disk finish in the microfill, and hybrid composite resins was as smooth as matrix strip finish on the surface roughness test. 2. Polishing paste or aluminum-oxide disk finish in the microfill ; polishing paste finish in the hybrid composite resins was as reflective as matrix strip finish on the refectivity test. 3. For the polishing paste, there were no significant differences between the composite resin materials on the surface roughness and refectivity tests. 4. For the aluminum-oxide disk, the best result was obtained with the microfill composite resin on the surface roughness and reflectivity test. 5. Diamond bur, carbide bur, and rubber point were inappropriate for the final polishing instruments.

  • PDF

Stress Intensity Factors of Center Cracked Laminated Composites under Uniaxial Tension (단순인장을 받는 복합 적층재 중앙균열의 응력확대계수)

  • 김성호;오재협;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1611-1619
    • /
    • 1991
  • 본 연구에서는 Hilton과 Sih의 경우를 확장 적용하여 Fig. 1(b)와 같이 탄성 층 내부에 존재하는 중앙균열선단의 응력확대계수 산출을 위하여 균열부위를 제외하고 는 섬유층과 레진층이 완전히 접착되었다고 가정한 모델을 다음과 같이 설정하였다. 중앙균열을 내재하고 있는 복합재료의 역학적 거동을 해석하기 위하여, 접착레진을 주 로하는 층(resin rich layer)을 중심으로 하여 상하 각1개의 섬유 (fiber)층과 균질한 특성을 갖는 복합재료의 층으로 단순화 하였으며, 이러한 단순화는 적층재에서의 균열 주위의 국부응력을 해석하기 위한 것으로서 복합재료는 레진층이나 섬유층에 비하여 매우 두꺼우므로 반무한체로 이상화 하였다. 선형탄성 이론에 의하여 혼합 경계조건 문제(mixed boundary value problem)로 부터 제2종 Fredholm적분방정식(fredholm int- egral equation of a second kind)을 유도하였으며 수치해석적인 방법에 의하여 응력 확대계수를 구하였다.