• Title/Summary/Keyword: Resin Flow

Search Result 389, Processing Time 0.032 seconds

Similarity Relations of Resin Flow in Resin Transfer Molding Process

  • Um, Moon-Kwang;Byun, Joon-Hyung;Daniel, Isaac M.
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.135-152
    • /
    • 2009
  • Liquid molding processes, such as resin transfer molding, involve resin flow through a porous medium inside a mold cavity. Numerical analysis of resin flow and mold filling is a very useful means for optimization of the manufacturing process. However, the numerical analysis is quite time consuming and requires a great deal of effort, since a separate numerical calculation is needed for every set of material properties, part size and injection conditions. The efforts can be appreciably reduced if similarity solutions are used instead of repeated numerical calculations. In this study, the similarity relations for pressure, resin velocity and flow front propagation are proposed to correlate another desired case from the already obtained numerical result. In other words, the model gives a correlation of flow induced variables between two different cases. The model was verified by comparing results obtained by the similarity relation and by independent numerical simulation.

Resin Flow Analysis of RTM Manufacturing Method for Design of Composite Fluid Storage Tank Structure (복합재료 유체 저장 탱크 구조 설계를 위한 RTM 공법 수지 유동 해석)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • In this study, resin flow analysis of resin transfer moulding (RTM) method was performed for mould design of composite structure. The target composite structure was a tank used for fluid storage. Natural c fiber composite was adopted for composite structural design of the fluid storage tank. RTM was adopted for manufacturing of the tank using natural fiber composites. Resin flow analysis was performed to find the proper RTM conditions of the tank. The resin flow analysis was performed using the commercial FEM flow simulation software. After repeated analysis while changing the location of resin inlet and outlet, the proper resin filling time and pattern were found.

A Study on Resin flow Analysis and Free Surface forming at Micro-stereolithography using a Dynamic Pattern Generator (동적 패턴 생성기를 이용한 마이크로 광 조형 시스템에서 수지 유동 해석 및 자유표면 형성에 관한 연구)

  • Won M.H.;Choi J.W.;Ha Y.M.;Lee S.H.;Kim H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.878-881
    • /
    • 2005
  • A Stereolithography technology is based on stacking of sliced layer from STL file that is converted from 3-dimensional CAD data. A microstereolithography technology is evolved from conventional stereolithography to fabricate microstructures. In this technology, we have to consider influence of resin flow to make refresh surface. To generate new resin surface, stage has to be moved downward deeply and upward to desired position. At this time, resin flow affects to refresh surface of resin. And resin viscosity is the key factor in simulation of resin flow. By setting optimal refresh time for resin surface, total fabrication time is reduced and there is no damage to fabricated layers. In this research, we simulate resin flow using CFD software and derive optimal stage moving time and dwelling time.

  • PDF

Three Dimensional numerical Simulation of Resin Flow and Void Formation in Resin Transfer Molding Process (RTM 공정에서의 수지 유동과 기공 생성의 3차원 수치해석)

  • 강문구;이도훈;이우일;엄문광;이상관
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.284-287
    • /
    • 2002
  • During resin transfer molding(RTM) process, in case of thick parts, resin flow and void formation should be modeled three dimensionally even though for parts of small thickness, resin flow and void formation can be modeled two dimensionally. In this study, numerical simulations of three dimensional mold filling and void formation during RTM process.

  • PDF

Three-Dimensional Modeling of Void Formation During Resin Transfer Molding (RESIN TRANSFER MOLDING 공정에서의 기공 형성에 관한 3차원 모델링)

  • Bae, Jun-Ho;Kang, Moon-Koo;Lim, Seoug-Taek;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.246-250
    • /
    • 2001
  • In resin transfer molding (RTM), resin is forced to flow through the fiber perform of inhomogeneous permeability. This inhomogeneity is responsible for the mismatch of resin velocity within and between the fiber tows. The capillary pressure of the fiber tows exacerbates the spatial variation of the resin velocity. The resulting microscopic perturbations of resin velocity at the flow front allow numerous air voids to form. In this study, a mathematical model was developed to predict the formation and migration of micro-voids during resin transfer molding. A transport equation was employed to account for the migration of voids between fiber tows. Incorporating the proposed model into a resin flow simulator, the volumetric content of micro-voids in the preform could be obtained during the simulation of resin impregnation.

  • PDF

Modeling of the filling process during resin injection/compression molding

  • Chang, Chih-Yuan
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.207-221
    • /
    • 2007
  • The filling process of resin injection/compression molding (I/CM) can be divided into injection and compression phases. During the resin injection the mold is kept only partially closed and thus a gap is present between the reinforcements and the upper mold. The gap results in preferential flow path. After the gap is filled with the resin, the compression action initiates and forces the resin to penetrate into the fiber preform. In the present study, the resin flow in the gap is simplified by using the Stokes approximation, while Darcy's law is used to calculate the flow field in the fiber mats. Results show that most of the injected resins enter into the gap during the injection phase. The resin injection time is extremely short so the duration of the filling process is determined by the final closing action of the mold cavity. Compared with resin transfer molding (RTM), I/CM process can reduce the mold filling time or injection pressure significantly.

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

Design of Natural Fiber Composites Chemical Container Using Resin Flow Simulation of VARTML Process

  • Lee, Haseung;Park, Gwanglim;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered -up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

Evaluation of 0ff-gas Characteristics in Vitrification Process of ion-Exchange Resin

  • Park, S. C.;Kim, H. S.;K. H. Yang;C. H. Yun;T. W. Hwang;S. W. Shin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9Nm$^3$/h at the burning rate of 40kg/h. And the composition of off-gas was avaluated as $CO_2$(41.4%), steam(40.0%), $O_2$(13.3%), NO(3.6%), and SO$_2$(1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3Nm$^3$/h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin.

  • PDF

A STUDY ON THE CLINICAL USAGE OF THE FLOWABLE COMPOSITE RESIN (유동성 복합레진의 임상적 용도에 관한 검토 연구)

  • Park, So-Young;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.255-261
    • /
    • 2002
  • The purpose of this study was to compare the microleakage pattern of flowable composite resin to sealant, composite resin used in preventive resin restoration and glass ionomer cement used as liner. 120 extracted sound human molars were divided into 6 groups : group 1 and 2:sealant ; group 3 and 4:preventive resin restoration ; group 5 and 6:sandwich technique restoration. For the experimental groups(group 2, 4 and 6), flowable composite resin(Tetric flow) was used. For the control group, Concise was used as sealant material(group 1), Z-100 with Concise were used as preventive resin restoration(group 3), and Vitrebond was used as cavity liner(group 5). All the restorations were thermocycled and the degree of dye penetration was evaluated with stereomicroscope. The microleakage of each group was measured and statistically analyzed. The results of the present study were as follows : 1. In group 1 and 2, there was no statistically significant difference in microleakage between Concise and Tetric flow(p>0.05). 2. In groups of preventive resin restorations, there was no statistically significant difference in microleakage between Z-100 with Concise and Tetric flow(p>0.05). 3. The microleakage of Vitrebond and Tetric flow used as liner showed no statistically significant difference(p>0.05).

  • PDF