• Title/Summary/Keyword: Resilient mount

Search Result 39, Processing Time 0.025 seconds

Optimal Arrangement of Resilient Mount installed on Frame Support Structure at Shipboard Equipment under Shock Load (충격하중하의 탑재장비 프레임 지지구조의 탄성마운트 배치 최적화에 관한 연구)

  • Ji, Yong Jin;Kwak, Jeong Seok;Lee, Hyun Yup;Kim, Sung Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.298-304
    • /
    • 2015
  • Shipboard equipment in naval ships should be designed to be safe under the shock load. Very high stress due to the shock load can be effectively reduced by the resilient mounts considering the mount capacity and dynamic characteristics. An optimum arrangement of resilient mount installed to absorb the shock energy is addressed to assess the safety of ship structure and shipboard equipment subjected to the shock load. Structural responses are analyzed for both frame structure supporting the shipboard equipment subject to the shock load with and without the resilient mounts. The shock absorbability of the resilient mount is evaluated by the results of structural response analysis; meanwhile, several types of shock analyses considering the arrangement of resilient mounts are carried out and the shock responses are compared to verify the effect of the arrangement. Thereafter, optimum arrangements are obtained by means of Genetic algorithm (GA) considering the different capacities of resilient mount. Stress, deformation and dynamic feature at the frame structure supporting the shipboard equipment under the shock load are also discussed in order to meet the capacity of resilient mount.

Vibration characteristics of diesel generator set with resilient mount and prevention of vibration on the design stage (탄성 마운트 장착 디젤 발전기 세트의 진동 특성과 예방에 대한 연구)

  • Lee, Kun-Hee;Bae, Jong-Gug;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.921-924
    • /
    • 2005
  • Diesel generator sets with resilient mounts often experience resonances by major excitations which come from diesel engine and their foundation with rigid body modes. Because their natural frequency is determined by moment of inertia and stiffness of resilient mount vibration problems are resolved by changing location and stiffness of resilient mounts. But the calculated natural frequencies are inaccurate due to uncertainty of the inertia and mount stiffness. So this result can be useless on the design stage. In this paper, the stiffness of mount is evaluated on result from mount stiffness test in laboratory and generator set vibration test and a simple calculation method for moment of inertia is proposed. Based on these data, the procedure to select optimized mount stiffness and location on the design stage is set up.

  • PDF

A Development of the Test Apparatus for Measuring the Acoustic Stiffness of Resilient Mounts (마운트의 음향강성 측정을 위한 시험장치 개발)

  • 배수룡;정우진;함일배;김두기;이헌곤
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.141-148
    • /
    • 1999
  • Resilient mounting is effective measures to reduce the structure-borne noise and radiated noise for many applications. The acoustic stiffness (frequency-dependent stiffness) of resilient mounts is an important parameter required in order to model vibration isolation with high accuracy. It is general to use measurement method for obtaining acoustic stiffness of complex resilient mounts under static preload. In this paper, the principles of measuring acoustic stiffness were described and the developed test apparatus was introduced. Also, the feasibility of the test apparatus is illustrated by measurement results of a resilient mount.

  • PDF

Investigation of the level difference of floor impact noises through the shape variation of EVA resilient materials with composite floor structure (EVA 완충재의 형상변환을 통한 복합구조의 바닥충격음 변이 조사)

  • Jakin Lee;Seung-Min Lee;Chan-Hoon Haan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2024
  • The present study aims to investigate the level difference of floor impact noises of composite floor structure using EVA resilient materials. In order to this, four different types of resilient materials were designed combining PET, PP sheet and EVA mount including Flat type, Deck type, Cavity type and Mount type. Totally 9 different samples were made for acoustic measurements which were carried out twice with bang-machine and impact ball as the heavy-weight floor impact noise sources. All the floor impact noise measurements were undertaken at the authentication institution. As a result, concerning Flat and Cavity types, it was found that 2 dB ~ 5 dB of heavy-weight floor impact noise was reduced supplementally when PET was added, while floor impact noise larger than 50 dB was acquired when single resilient material was used. Especially, most high performance was obtained for Mount type with 1st grade of light-weight floor impact noise and 2nd grade of heavy-weight floor impact noise. This is because of material property with low dense PET sound absorption materials which fill all around EVA mounts. Also, it was considered that this results are due to the sound impact absorption by the both EVA mounts and the air cavity between EVA mount and PP sheet. Also, it was found that at least 36 EVA mounts per 1m2 area of resilient panel make more noise reduction of heavy-weight floor impact noises.

An Experimental Study on the Dynamic Characteristics of Onboard Machinery with Resilient Mounts (선내 탑재 마운팅 장비의 동특성에 관한 실험적 연구)

  • 김극수;최수현
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.28-33
    • /
    • 2003
  • This study is performed to evaluate and design the dynamic characteristics of the onboard machinery with resilient mounts. To avoid resonance with onboard machinery and external force, it is necessary to calculate natural frequencies of the resilient mounting system more accurately. Natural frequencies of on board machinery are determined by rigid body properties(mass, moment of inertia, center of mass) of machinery and stiffness of mounts. But it is very difficult to calculate rigid body properties theoretically. And stiffness properties of rubber mounts vary with dynamic displacement, pre load, frequency and temperature, and so on. In this study, we have identified rigid body properties using experimental modal analysis and estimated dynamic stiffness of rubber mount for onboard machinery using measured vibration response during seatrial. We measured displacement excitation through deck under mounts and evaluated relationship between modes of resilient mounting system and main excitation sources of a ship.

Reduction of airborne and structure-borne noise of naval ship pump (함정용 펌프의 공기음 및 고체음저감)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.942-947
    • /
    • 2002
  • In this study, reduction of airborne and structure-borne noise of naval ship pump is presented. Since piping system arrangement such as valve location, flexible joint, pipe diameter and elbow location, discharge basin affect greatly on the noise measurement, care must be taken to minimize the unnecessary noise from the piping system. It is shown that structure-borne noise of the motor with single resilient mount system exceeds criterion. Therefore, it is concluded that double resilient mount system is inevitable. Two kinds of mount is studied for upper mount; spring and rubber type. Although both mounts show good performance at low frequency including rpm frequency, 63Hz, spring mount is found to be inadequate at high frequency, because spring coil acts as a path for SBN.

  • PDF

Development of stiffness adjustable mount for vibration control of marine diesel generator set (박용 발전기세트 진동 제어를 위한 강성 조절형 마운트 개발)

  • Kim, W.H.;Joo, W.H.;Kim, D.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.89-92
    • /
    • 2012
  • Marine diesel generator(D/G) set which is supported with resilient mounts for vibration isolation has been experienced the resonance problem by the main engine or propeller excitations and rigid body modes. Then the avoidance of resonance is difficult because the several excitations and 6 rigid body modes have to be considered simultaneously. In this paper, stiffness adjustable mounts was developed and proposed to control the natural frequencies of installed D/G set. Operating concept of the mount is that the total stiffness of mount can be changed according to the engagement of secondary rubber element in addition to primary one. The performance of mount was verified with the test rig and actual experiment in D/G set.

  • PDF

The Experimental Study on the Impact Sound Insulation Floors due to Waste Tire Chip (폐타이어 칩의 바닥충격음 차단성능에 관한 실험적 연구)

  • 양관섭;이세현;김홍열;김승민
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.477-484
    • /
    • 1999
  • This study aims to present proper thickness of resilient mount and pattern of chips for the improvement of impact sound isolation. To achieve this aim, field tests were performed to evaluate the performance of impact sound isolation of pilot samples using waste tire chips against light and heavy-weight impacter, which samples were installed over concrete slabs of an apartment housing. In this study, the experiments were performed by the impact sound level of floors in KS F 2810 "Method for field measurement of floor impact level". As results, a flooring structure using waste tire chips as a resilient mount, with no relation to chip's types, has enhanced performance by 1~2 degree in light impact sound isolation, while it has improvement in heavy impact sound isolation. And fiber-type chips have better performance than granule-type ones when they overlaid concrete slab with 15~20 mm of thickness. For the improvement of impact sound isolation, it is recommended that insulating materials should be applied at joints between floating floors and walls, or floating floors and a doorframes, and also waterproof papers should be used for the effective thickness of resilient mount.ent mount.

  • PDF

A Study on Development of an Active Hybrid Mount for Naval Ships (함정용 능동 하이브리드 마운트 개발에 대한 연구)

  • Moon, Seok-Jun;Ji, Yong-Jin;Yoon, Jeong-Sik;Choi, Seung-Bok;Lee, Hyun-Yup;Kim, Jae-Ho;Jung, Woo-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.288-295
    • /
    • 2008
  • Passive-type control devices such as resilient mounts and wire rope isolators are generally used for protecting the shipboard equipment from shock loading and for suppressing the mechanical vibration of the equipment in naval ships. To improve the performance of the control device, a new hybrid mount is under development in this study. This mount consists of a passive-type rubber element and an active-type piezo-stack element. It can be expected that the mount has enhanced performance of about 20 dB or more with respect to transmissibility through a series of performance tests of prototype mount.

SBN(Structure-borne Noise) Reduction of Resiliently Mounted Machinery and Effect of Foundation Impedance (탄성지지된 장비의 고체음저감 및 받침대 임피던스효과)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.423-426
    • /
    • 2007
  • In this paper, vibration reduction of resiliently mounted machinery and effect of the foundation impedance is studied. SBN (Structure-borne noise) reduction through the mount is analyzed by assuming that the system is modeled as a mass-spring system, while the impedance of the floor is included in the prediction. The comparison of the SBN difference through the mount between predictions and measurements show that the slopes are similar in the case of single-mount system, while the measurements differs significantly from the predictions in the case of the double-resilient system.

  • PDF