• Title/Summary/Keyword: Residue analysis

Search Result 882, Processing Time 0.024 seconds

Establishment of Analytical Method for Pymetrozine Residues in Crops Using Liquid-Liquid Extraction(LLE) (액-액 분배법을 활용한 작물 중 pymetrozine의 잔류분석법 확립)

  • Yoon, Ji-Young;Moon, Hye-Ree;Park, Jae-Hun;Han, Ye-Hoon;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • Polar pesticides like pymetrozine (log $P_{ow}$: -0.18) are known to be difficult to analyze. The analytical method of pymetrozine using hydromatrix included in the official method of KFDA was uncommon and provided ambiguous evidence to confirm both the identity and the quantity. Therefore, precise single residue analytical method was developed in representative crops for using liquid-liquid extraction (LLE). The pymetrozine residue was extracted with methanol from 11 representative crops which comprised apple, blueberry, broccoli, cabbage, cherry, crown daisy, hulled rice, Korean cabbage, potato, rice and watermelon. The extract was purified serially by liquid-liquid extraction (LLE) and silica solid phase extraction (SPE). For rice and hulled rice samples, n-hexane partition was additionally adopted to remove nonpolar interferences, mainly lipids. The residue levels were analyzed by HPLC with DAD, using $C_8$ column. LOQ (limit of quantitation) of pymetroizinie was 1 ng (S/N > 10) and MQL (method quantitation limit) was 0.01 mg/kg. Mean recoveries from 11 crop samples fortified at three levels (MQL, 10 ${\times}$ MQL and 50 ${\times}$ MQL) in triplicate were in the range of 83.1~98.5% with coefficients of variation (CV) of less than 10%, regardless of sample type, which satisfies the criteria of KFDA. The method established in this study could be applied to most of crops as an official and general method for analysis of pymetrozine residue.

Improvement of Analytical Method for Residue Pesticides in Herbal Medicines Using Macroporous Diatomaceous Earth Column (다공성 규조토 컬럼을 이용한 한약재 중 잔류농약 분석법 개선)

  • Hwang, Jeong-In;Jeon, Young-Hwan;Kim, Hyo-Young;Kim, Ji-Hwan;Ahn, Ji-Woon;Seok, Da-Rong;Lee, Yoon-Jeong;Park, Ju-Young;Kim, Do-Hoon;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.140-148
    • /
    • 2011
  • The official analytical method of residue pesticides in herbal medicines by KFDA cannot be applied to all of the pesticides and herbal medicines because of various active materials in herbal medicines and various physicochemical properties of pesticides. Moreover, liquid-liquid partition uses harmful solvents such as methylene chloride and is consuming a lot of time and effort. In order to improve the problems, we have studied for the availability of the analytical method applying the macroporous diatomaceous earth (MDE) column instead of liquid-liquid partition to simultaneously analyze five pesticides in two dried herbal medicines. The results showed that the recovery rates of acetamiprid and azoxystrobin in Astragalus root by GC/ECD ranged from 89.6 to 94.1%, from 86.8 to 94.4%, respectively, and those of bifenthrin, chlorfenapyr, chlorpyrifos in Cnidii Rhizoma by GC/MS ranged from 83.6 to 88.4%, from 77.4 to 83.8%, from 82.6 to 84.3%, respectively. Also, the coefficients of variation (CV) for triplication ranged from 0.5 to 1.7%. The results satisfied the criteria of residue pesticide analysis, setting 70~120% for the recovery rate and below 10% for the coefficient of variation. The improved methods are safer to residue pesticide analysts, faster and less laborious than the KFDA official method.

Monitoring and Safety Assessment of Pesticide Residues in Ginseng (Panax ginseng C.A. Meyer) from Traditional Markets (유통 수삼 중 잔류농약 모니터링 및 안전성 평가)

  • Noh, Hyun Ho;Lee, Jae Yun;Park, Hyo Kyoung;Jeong, Hye Rim;Lee, Jeong Woo;Jin, Me Jee;Choi, Hwang;Yun, Sang Soon;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • This study was carried out to survey residual characteristics of pesticide in fresh ginsengs collected from 45 markets at 15 regions in Korea using multiresidue analysis with a GC-MS/MS and an LC-MS/MS. After residue analysis was performed, the pesticides detected from ginsengs were quantitated using their analytical methods validated by recovery tests with a GC-ECD/NPD. As a results of analysis of pesticide residue, cypermethrin, fenitrothion, fludioxonil, thifluzamide, and tolclofos-methyl were detected from 16 samples among 45 samples in total, indicating detection rate was 35.6%. Tolclofos-methyl was found to be highest in detection frequency in ginseng. Fenitrothion that has not established maximum residue limit and pre-harvest interval for ginseng was detected. The amounts of all pesticides detected were less than their MRLs. Ratios of estimated daily intakes to acceptable daily intakes of the detected pesticides in ginseng were found to be from 0.03 to 16.67%.

Residue level and pharmacokinetics of trichlorfon in the Japanese eel (Anguilla japonica) after bath treatment (Trichlorfon (TCF)의 약욕 투여에 따른 뱀장어 체내 약물 잔류량 및 약물동태학 연구)

  • Jo, Hyun Ho;Chung, Joon Ki
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • This study performed a trichlorfon (TCF) residue and pharmacokinetic analysis with Japanese eels, Anguilla japonica, to obtain baseline data to establish the maximum residue level (MRL) of TCF in A. japonica. After dipping A. japonica in 30 ppm and 150 ppm of TCF at 28℃ and 18℃, drug residue in the body was analyzed with LC-MS/MS, and these results were further analyzed with the PK solver program to obtain the pharmacokinetic parameters of TCF in the serum, muscles, and liver. The maximum concentrations (Cmax) in the serum, muscles, and liver were 25.87-357.42, 129.91-1043.73, and 40.47-375.20, respectively, and the time to maximum concentration (Tmax) was 0.13-1.32h, 1.17-3.34h, and 0.14-5.40h, respectively. The terminal elimination half-life (T1/2) was 2.13-3.92h, 5.30-10.35h, and 0.65-13.81h, respectively. In the 30 mg/L concentration group, TCF was not detected in the serum of eels 96 hours after bathing, and was below the detection limit after 336 hours in muscle and liver. On the other hand, in the 150 mg/L concentration group, TCF was not detected in the serum of eels 336 hours after bathing, but was detected in muscle and liver at 336 hours. In conclusion, the results of this study would be useful in establishing the MRL of TCF in farmed A. japonica.

Characterization of Alanine Scanning Mutants of a Peptide Specifically Binding to $TiO_{2}$ Nanoparticles ($TiO_{2}$ Nanoparticle에 특이적으로 결합하는 Peptide의 Alanine Scanning Mutant의 성질에 관한 연구)

  • Seo, Min-Hee;Chael, Hee-Kwon;Myung, Heejoon
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.319-321
    • /
    • 2005
  • We have previously reported the isolation and characterization of peptides binding to $TiO_{2}$ nanoparticles from phage display peptide libraries. One of the peptides (PEP9) was selected and mutant peptide-displaying phages were produced by alanine scanning mutagenesis. The mutant phages were subjected to binding analysis to $TiO_{2}$ nanoparticles. When the proline at residue 4 was substituted by alanine, the binding activity was reduced to $10\%$ of that of wild type PEP9. Substitution of valine at residue 2, serine at residue 3, and isoleucine at residue 5 also decreased the binding to $40\%$. Based on these observations, we concluded that the three dimensional structure generated by residues 2-5 was the critical factor for the binding between PEP9 and the nanoparticle.

Studies on the Content and Heat Decomposition of Residual Tetracycline in Meats on the Market (시판 육류중의 Tetracycline계 항생물질 잔류량과 가열분해에 관한 연구)

  • 배기철;이영근
    • Journal of Food Hygiene and Safety
    • /
    • v.6 no.2
    • /
    • pp.83-87
    • /
    • 1991
  • Beef, pork and chicken on the market were analyzed for determination of tetracyclines residue and decomposition of tetracyclines by heating were studied. The content of oxytetracycline was trace in chicken A, 0.09 mg/kg in C and trace in beef C, pork A and B, but in the other samples was not detected oxytetracycline. Chlortetracycline residue was 0.14, 0.02 and 0.01 mg/kg in chicken A, C and beef B respectively. In HPLC analysis, two peaks of 8.1 and 9.0 min of retention time were found from beef and pork and expected to be component of meat, and because of same retention time, the one of 9.0 min interrupted determination of tetracycline. But those were not found in chicken, therefore the residue was 0.01 mg/kg in sample A. The residue were degradated rapidly by heating of roast, but slightly by that of boiling.

  • PDF

Analysis of bee venom residues in milks of dairy cattle using UHPLC with newly developed pre-processing method (봉독 분석을 위한 전처리 방법 개발 및 이를 이용한 젖소 원유 중의 봉독 잔류물질 조사)

  • Han, Sang-Mi;Hong, In-Pyo;Woo, Soon-Ok;Kim, Se-Gun;Jang, Hye-Ri
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2015
  • Bee venom has been used as to prevent and treat bovine mastitis as natural antimicrobial compounds in some dairy cattle farms in Korea. It is needed to determine the residual of bee venom in milks of dairy cattle treated with bee venom. Since bee venom is not approved as a raw material for animal drugs, the preprocessing method to detect bee venom residual in milk and the tolerance limit for its residue has not been established yet in Korea. Therefore, the purpose of this study was to develop pre-processing method not affecting major component of bee venom for detection of its residue in milks using ultra-high performance liauid chromatography (UHPLC). In addition, bee venom residue was also analyzed in milk samples of dairy cattle treated for mastitis with bee venom using UHPLC with the developed pre-processing method in this study. As a result, melittin, histamin and phospolipase A2, the major components of bee venom, were all detected by UHPLC with the pre-processing method developed in this study. The results of this study suggest that the pre-processing method developed in this study can be useful to detect bee venom residue in dairy cattle milk. We also found that no bee venom residues were detected in milk samples collected from dairy cattle treated with bee venom after 1 and 3 days, respectively.

Determination and survey of tetracyclines residue in honey by high performance liquid chromatography (액체크로마토그래피를 이용한 벌꿀 중 테트라싸이클린계 항생물질의 정량분석 및 잔류조사)

  • Lee Sung-Mo;Park Eun-Jeong;Hong Jee-Young;Kim Jung-Im;Lee Jung-Goo;Hwang Hyun-Soon;Kim Yong-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.28 no.3
    • /
    • pp.203-213
    • /
    • 2005
  • Oxytetracycline, tetracycline, chlortetracycline and doxycycline in honey were separated by solid phase extraction (SPE) and determined with high performance liquid chromatography (HPLC) with UV/Visible detector. Analysis was carried out using following conditions: XTerra $C_8$ column $(3.9\times150mm\;i.d. 5{\mu}m)$, mobile phase composed of 0.01M oxalic acid : methanol : acetonitrile (820 : 80 : 100, v/v/v), isocratic pump at a flow rate of 0.9 ml/min. and $50{\mu}l$ of injection volume, UV/Visible detector with wavelength of 360nm. The calibration curves of four tetracyclines showed linearity $(\gamma^2>0.999)$ at concentration range of $100\~1,000 ng/ml$. The recoveries in fortified honey represented more than $70\%$ with low coefficient of variation $(<10\%)$ for concentration range of four tetracyclines. The detection limits for oxytetracycline, tetracycline, chlortetracycline and doxycycline were 13.8, 14.6, 26.2 and 24.9ng/g in acacia honey. respectively. We also monitored tetracyclines residue in domestic honey [n : 38, acacia (20), wild flower (18) ] and foreign honey [n=22, legally distributed (13), illegally distributed (9)] using modified Charm II screening and HPLC confirmation methods. Seven of the 60 samples $(11.7\%)$ were suspect positive using modified Charm II screening test. Chlortetracycline residue was found in one foreign honey (illegally distributed) tested at concentrations of 0.22 ppm. Conclusively, for more effective control of tetracyclines used in beekeeping should be further survey for residues in honey and also national guidelines (maximum residue limit : MRL) and methods should be obligatory.

Structural Analysis of the Streptomyces avermitilis CYP107W1-Oligomycin A Complex and Role of the Tryptophan 178 Residue

  • Han, Songhee;Pham, Tan-Viet;Kim, Joo-Hwan;Lim, Young-Ran;Park, Hyoung-Goo;Cha, Gun-Su;Yun, Chul-Ho;Chun, Young-Jin;Kang, Lin-Woo;Kim, Donghak
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of $2.6{\AA}$. Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant's catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.

Analytical Method for Triazine Herbicide Cyanazine Residues in Major Medicinal Crops (주요 약용작물에 대한 Cyanazine 제초제의 잔류 분석법)

  • Hwang, Young Sun;Lim, Jung Dae;Choung, Myoung Gun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.237-245
    • /
    • 2016
  • Background: Cyanazine is used as a pre-emergent herbicide once during the growing season to control weeds of many upland crops worldwide. This study aimed to establish a method to determined cyanazine residue levels in major medicinal crops by using high performance liquid chromatography-UV detection/mass spectometry (HPLC-UVD/MS). Methods and Results: Cyanazine residue was extracted with acetone from the raw products of four representative medicinal plants - Scutellaria baicalensis, Paeonia lactiflora, Platycodon grandiflorum and Angelica gigas. The extract was diluted with a large volume of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. It was then purifined using optimized Florisil column chromatography. HPLC analysis conducted using an octadecylsilyl column allowed the successful separation of cyanazine from co-extractives of the samples, and the amount was sensitively quantified by ultraviolet absorption at 225 nm with no interference. The accuracy and precision of the proposed method were validated by conducting recovery experiments on each medicinal crop sample fortified with cyanazine at two concentration levels per crop in triplicate. Conclusions: The mean recoveries ranged from 91.2% to 105.3% for the four representative medicinal crops. The coefficients of variation were less than 10%, irrespective of the sample types and fortification levels. The limit of quantification of cyanazine was 0.02 mg/kg as verified by the recovery experiment. A confirmatory method was performed by liquid chromatography/MS using selected-ion monitoring technique to clearly identify the suspected residue.