DOI QR코드

DOI QR Code

Structural Analysis of the Streptomyces avermitilis CYP107W1-Oligomycin A Complex and Role of the Tryptophan 178 Residue

  • Han, Songhee (Department of Biological Sciences, Konkuk University) ;
  • Pham, Tan-Viet (Department of Biological Sciences, Konkuk University) ;
  • Kim, Joo-Hwan (Department of Biological Sciences, Konkuk University) ;
  • Lim, Young-Ran (Department of Biological Sciences, Konkuk University) ;
  • Park, Hyoung-Goo (Department of Biological Sciences, Konkuk University) ;
  • Cha, Gun-Su (School of Biological Sciences and Technology, Chonnam National University) ;
  • Yun, Chul-Ho (School of Biological Sciences and Technology, Chonnam National University) ;
  • Chun, Young-Jin (College of Pharmacy, Chung-Ang University) ;
  • Kang, Lin-Woo (Department of Biological Sciences, Konkuk University) ;
  • Kim, Donghak (Department of Biological Sciences, Konkuk University)
  • Received : 2015.08.27
  • Accepted : 2015.11.19
  • Published : 2016.03.31

Abstract

CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of $2.6{\AA}$. Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant's catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.

Keywords

References

  1. Burg, R.W., Miller, B.M., Baker, E.E., Birnbaum, J., Currie, S.A., Hartman, R., Kong, Y.L., Monaghan, R.L., Olson, G., Putter, I., et al. (1979). Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15, 361-367. https://doi.org/10.1128/AAC.15.3.361
  2. Choi, S., Han, S., Lee, H., Chun, Y.J., and Kim, D. (2013). Evaluation of Luminescent P450 analysis for directed evolution of human CYP4A11. Biomol. Ther. 21, 487-492. https://doi.org/10.4062/biomolther.2013.086
  3. Durairaj, P., Malla, S., Nadarajan, S.P., Lee, P.G., Jung, E., Park, H.H., Kim, B.G., and Yun, H. (2015). Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of omega-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Fact 14, 45. https://doi.org/10.1186/s12934-015-0228-2
  4. Dyson, P. (2011). Streptomyces: Molecular Biology and Biotechnology (Norfolk, UK, Caister Academic Press).
  5. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  6. Han, S., Pham, T.V., Kim, J.H., Lim, Y.R., Park, H.G., Cha, G.S., Yun, C.H., Chun, Y.J., Kang, L.W., and Kim, D. (2015). Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575, 1-7. https://doi.org/10.1016/j.abb.2015.03.025
  7. Ikeda, H., Nonomiya, T., Usami, M., Ohta, T., and Omura, S. (1999). Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96, 9509-9514. https://doi.org/10.1073/pnas.96.17.9509
  8. Kelly, S.L., Kelly, D.E., Jackson, C.J., Warrilow, A.G.S., and Lamb, D.C. (2005). The diversity and importance of microbial cytochrome P450. In cytochrome P450: structure, mechanism, and biochemistry, P.R. Ortiz de Montellano, ed. (New York, Plenum Press), pp. 585-617.
  9. Kim, D., Cha, G.S., Nagy, L.D., Yun, C.H., and Guengerich, F.P. (2014). Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11. Biochemistry 53, 6161-6172. https://doi.org/10.1021/bi500710e
  10. Lamb, D.C., Zhao, B., Guengerich, F.P., Kelly, S.L., and Waterman, M.R. (2011). Genomics of Streptomyces cytochrome P450. In streptomyces molecular biology and biotechnology, P. Dyson, ed. (Norfolk, UK, Caister Academic Press), pp. 233-253.
  11. Lee, H., Kim, J.H., Han, S., Lim, Y.R., Park, H.G., Chun, Y.J., Park, S.W., and Kim, D. (2014). Directed-evolution analysis of human cytochrome P450 2A6 for enhanced enzymatic catalysis. J. Toxicol. Environ. Health A 77, 1409-1418. https://doi.org/10.1080/15287394.2014.951757
  12. Li, S., Tietz, D.R., Rutaganira, F.U., Kells, P.M., Anzai, Y., Kato, F., Pochapsky, T.C., Sherman, D.H., and Podust, L.M. (2012). Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. J. Biol. Chem. 287, 37880-37890. https://doi.org/10.1074/jbc.M112.410340
  13. Lim, Y.R., Hong, M.K., Kim, J.K., Doan, T.T., Kim, D.H., Yun, C.H., Chun, Y.J., Kang, L.W., and Kim, D. (2012). Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch. Biochem. Biophys. 528, 111-117. https://doi.org/10.1016/j.abb.2012.09.001
  14. Min, H., Kawasaki, I., Gong, J., and Shim, Y.H. (2015). Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans. Mol. Cells 38, 236-242. https://doi.org/10.14348/molcells.2015.2282
  15. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  16. Schenkman, J.B., Remmer, H., and Estabrook, R.W. (1967). Spectral studies of drug interaction with hepatic microsomal cytochrome P-450. Mol. Pharmacol. 3, 113-123.
  17. Schrodinger, L. (2010). The PyMOL Molecular Graphics System, Version 1.3r1.
  18. Schuttelkopf, A.W., and van Aalten, D.M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D. Biol. Crystallogr. 60, 1355-1363. https://doi.org/10.1107/S0907444904011679
  19. Symersky, J., Osowski, D., Walters, D.E., and Mueller, D.M. (2012). Oligomycin frames a common drug-binding site in the ATP synthase. Proc. Natl. Acad. Sci. USA 109, 13961-13965. https://doi.org/10.1073/pnas.1207912109
  20. Vagin, A., and Teplyakov, A. (1997). MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 30, 1022-1025. https://doi.org/10.1107/S0021889897006766
  21. Xu, L.H., Fushinobu, S., Ikeda, H., Wakagi, T., and Shoun, H. (2009). Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J. Bacteriol. 191, 1211-1219. https://doi.org/10.1128/JB.01276-08
  22. Xu, L.H., Fushinobu, S., Takamatsu, S., Wakagi, T., Ikeda, H., and Shoun, H. (2010). Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J. Biol. Chem. 285, 16844-16853. https://doi.org/10.1074/jbc.M109.092460

Cited by

  1. Structural insights into the binding of lauric acid to CYP107L2 from Streptomyces avermitilis vol.482, pp.4, 2017, https://doi.org/10.1016/j.bbrc.2016.11.131
  2. Characterization of a Biflaviolin Synthase CYP158A3 fromStreptomyces avermitilisand Its Role in the Biosynthesis of Secondary Metabolites vol.25, pp.2, 2017, https://doi.org/10.4062/biomolther.2016.182
  3. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function vol.34, pp.9, 2017, https://doi.org/10.1039/C7NP00034K
  4. Recent Structural Insights into Cytochrome P450 Function vol.37, pp.8, 2016, https://doi.org/10.1016/j.tips.2016.05.006
  5. Role of Carbon Monoxide in Neurovascular Repair Processing vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2017.144
  6. IdeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces avermitilis vol.84, pp.22, 2018, https://doi.org/10.1128/aem.01503-18
  7. Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents vol.27, pp.2, 2019, https://doi.org/10.4062/biomolther.2018.183
  8. More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus , Cyanobacteria , and Mycobacterium vol.21, pp.13, 2016, https://doi.org/10.3390/ijms21134814
  9. Methylglyoxal disrupts the functionality of rat liver mitochondria vol.351, pp.None, 2016, https://doi.org/10.1016/j.cbi.2021.109677