• Title/Summary/Keyword: Residue analysis

Search Result 882, Processing Time 0.032 seconds

Preparation of Nanoporous Activated Carbon with Sulfuric Acid Lignin and Its Application as a Biosorbent (황산 가수분해 잔사 리그닌을 이용한 나노 세공 활성탄 제조 및 친환경 흡착제로의 활용 가능성 평가)

  • Hwang, Hyewon;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon In this study, catalytic activation using sulfuric acid lignin (SAL), the condensed solid by-product from saccharification process, with potassium hydroxide at $750^{\circ}C$ for 1 h in order to investigate its potential to nanoporous carbon material. Comparison study was also conducted by production of activated carbon from coconut shell (CCNS), Pinus, and Avicel, and each activated carbon was characterized by chemical composition, Raman spectroscopy, SEM analysis, and BET analysis. The amount of solid residue after thermogravimetric analysis of biomass samples at the final temperature of $750^{\circ}C$ was SAL > CCNS > Pinus > Avicel, which was the same as the order of activated carbon yields after catalytic activation. Specifically, SAL-derived activated carbon showed the highest value of carbon content (91.0%) and $I_d/I_g$ peak ratio (4.2), indicating that amorphous large aromatic structure layer was formed with high carbon fixation. In addition, the largest changes was observed in SAL with the maximum BET specific surface area and pore volume of $2341m^2/g$ and $1.270cm^3/g$, respectively. Furthermore, the adsorption test for three kinds of organic pollutants (phenol, 2,4-Dichlorophenoxyacetic acid, and carbofuran) were conducted, and an excellent adsorption capacity more than 90 mg/g for all activated carbon was determined using 100 ppm of the standard solution. Therefore, SAL, a condensed structure, can be used not only as a nanoporous carbon material with high specific surface area but also as a biosorbent applied to a carbon filter for remediation of organic pollutants in future.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

Development and Validation of an Official Analytical Method for Determination of Ipfencarbazone in Agricultural Products using GC-ECD (GC-ECD를 이용한 농산물 중 Ipfencarbazone의 신규분석법 개발 및 검증)

  • Jang, Jin;Kim, Heejung;Lee, Eun-Hyang;Ko, Ah-Young;Ju, Yunji;Kim, Sooyeon;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.210-217
    • /
    • 2015
  • Ipfencarbazone is a herbicide of the tetrazolinone class, and is believed to be an inhibitor of very long chain fatty acids (VLCFAs), which control cell division in weeds. The objective of this study was to develop and validate an official analytical method for ipfencarbazone determination in agricultural products. The ipfencarbazone residues in agricultural products were extracted with acetone, partitioned with n-hexane, and then purified through silica SPE cartridge. Finally, the analyte was quantified by gas chromatograph-electron capture detector (GC-ECD) and confirmed with gas chromatograph/mass spectrometer(GC/MS). The linear range of ipfencarbazone was 0.01 to 1.0 mg/L with the coefficient of determination ($r^2$) of 0.9999. The limit of detection (LOD) and quantification (LOQ) was 0.003 and 0.01 mg/kg, respectively. In addition, average recoveries of ipfencarbazone ranged from 80.6% to 112.3% at the different concentration levels LOQ, 10LOQ and 50LOQ, while the relative standard deviation was 2.2-8.6%. All values were consistent with the criteria ranges requested in the CODEX guidelines. Furthermore, and inter-laboratory study was conducted to validate the method. This proposed method for determination of ipfencarbazone residues in agricultural products can be used as an official analytical method.

Effect of Oxytetracycline Injection an the Body of Paralichthys Olivaceus (Oxytetracycline의 투여방법에 따른 넙치(Paralichthys olivaceus) 체내의 잔류 특성)

  • Ko, Chang-Sik;Kim, Dong-Hwi;Park, So-Hyun;Moon, Kyung-Mi;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.309-317
    • /
    • 2016
  • Industrial advancements have resulted in food culture development, followed by increased seafood consumption and large-scale seafood farming, which has been accompanied by an increased prevalence of fish disease. The antibiotic oxytetracycline (OTC) is commonly used to prevent and treat bacterial diseases in fish. However, overuse of OTC had led to negative aspects. In view of this, we conducted a research with regard to aspects of remnants on olive flounder skin, liver, and muscle through dipping treatment and oral feeding of OTC and analyzed the results with bioassay and HPLC quantitative analyses. The dipping treatment was carried out once with 25 g/ton/hr of OTC, and the oral treatment with 62.5 mg/kg body weight/7 days. The results underwent a bioassay analysis. The dipping group reacted only on the skin right after dipping, while the oral feeding group responded on the skin for 77 days after feeding and on the muscle for 14 days. In the dipping group, the HPLC quantitative analysis revealed remnants in the skin on the 37th day and on the 13th day in the liver group. No remnants were found in the muscle, even immediately after dipping. In the oral feeding group, there was a high concentration (1.07 mg/kg) of remnant in the skin, even on the 77th day. 0.56 mg/kg in the liver, even a small amount, and no remnant in the muscle on the 42nd day. To sum up, the results suggest that it will not be harmful to our body to observe the OTC withdrawal period of 40 days with the muscle because OTC will hardly remain on it. When using olive flounder for sashimi, the skin and liver should not be used for broth, as the quantity of OTC residue is several times higher than that found in muscle. As previous studies reported that the concentration of remnants gradually decreased with heating, so it was likely to lessen, depending on the cooking temperature.

Hazard Analysis for the Application of Good Agricultural Practices(GAP) on Paprika During Cultivation (파프리카의 농산물우수관리제도(GAP)적용을 위한 재배단계의 위해요소 분석)

  • Nam, Min-Ji;Chung, Do-Yeong;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.273-282
    • /
    • 2011
  • This study established hazards which may cause risk to human at farm during cultivation stage of paprika. Samples of plants (paprika, leaf, stem), cultivation environments (water, soil), personal hygiene (hand, glove, clothes), work utensils (carpet, basket, box) and airborne bacteria were collected from three paprika farms (A, B, C) located in Western Gyeongnam, Korea. The collected samples were assessed for biological (sanitary indications and major foodborne pathogens), chemical (heavy metals, pesticide residues) and physical hazards. In biological hazards, total bacteria and coliform were detected at the levels of 1.9~6.6 and 0.0~4.610g CFU/g, leaf, mL, hand or 100 $cm^2$, while Escherichia coli was not detected in all samples. In major pathogens, only Bacillus cereus were detected at levels of ${\leq}$ 1.5 log CFU/g, mL, hand or 100 $cm^2$, while Staphylococuus aureus, Listeria monocytogenes, E. coli O157 and Salmonella spp. were not detected in all samples. Heavy metal and pesticide residue as chemical hazards were detected at levels below the regulation limit, physical hazard factors, such as insects, pieces of metal and glasses, were also found in paprika farms. Proper management is needed to prevent biological hazards due to cross-contamination while physical and chemical hazards were appropriate GAP criteria.

Cumulative Risk Assessment of Organophosphorus Pesticides in the Diet (식품을 통한 유기인계농약류의 동시노출위해성평가)

  • 이효민;한지연;윤은경;김효미;황인균;최동미;이강봉;원경풍;송인상
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Risk assessment traditionally are conducted on individual chemicals; however, humans are exposed to multiple chemicals in daily life. The organophosphorus (OP) pesticides are considered in a single risk assessment because they act by a common mechanism of toxicity, and there is likely to be expose to multiple OP pesticides simultaneously or sequentially. The OP pesticides act by inhibiting the enzyme acetylcholinesterasc (AChE) and have available extensive database. AChE is widely distributed throughout the body, most importantly in the nervous system. Inhibition of AChE results in accumulation of acetylcholine in the nervous system that results in clinical signs of cholinergic toxicity, including increased salivation and lacrimation, nausea and vomiting, muscle fasciculation, lethargy and fatigue, among others. To conduct an exposure assessment for pesticides in the diet, we need to know the food consumption patterns of the populations, and the pesticide residue levels in the foods that are consumed. This study was conducted to identify cumulative dietary risk due to multiple OP pesticides that can be exposed through various foods. Total 22 food samples including cereals, vegetables and fruits were collected randomly two times from food markets in several sites (4 cities). The subjected foods were selected by regarding of highly consumed foods to general Korean people. The 12 OP pesticides including Acephate, Azinphos-methyl, Chlorpyrifos, and Diazinon were monitored. For the exposure assessment, general adult group of 60 kg body weight was regarded as target population and food consumption data suggested by Lee et al. (2000) were used as consumed value of individual food. Analyses of samples for OP pesticides have been carried out according to the multiclass multiresidue analysis method and acephate and methamidophos analysis method of Korea Food Code. In general the levels of OP pesticides found in the food samples were very low or not detected.

  • PDF

A Study on the Au Recoverability from Mongolian Tailings (몽골 광미로부터 Au 회수 가능성에 관한 연구)

  • Ko, Chin-Surk;Burentogtokh, Togtokhmaa;Lee, Jong-Ju;Park, Cheon-Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • The purpose of this study was to investigate the possibility of eco-friendly/efficient recovery of valuable resources, such as Au from mine tailings, which are environmental pollutants in the Mongolian mine sector. For this purpose, this study selected 4 place of mine tailings of the Mongolian mines sector and carried out mineralogy evaluation of the valuable resources in the tailings. In this study, flotation was performed to separate and concentrate valuable resources in the tailings. Microwave nitric acid leaching was used to leach the valuable resources contained in the sample and to improve the Au grade. Chloride leaching attempted to leach Au from the leaching residues. XRD analysis of the tailings samples showed that most of the samples consisted of silicate minerals. As a result of confirming the content of the element through XRF analysis, the SiO2 content was very high, the Fe2O3 content was 2.32-4.23%, and the content of PbO, CuO and ZnO components were all within 2%. As a result of flotation for the tailings samples, the recovery of Au was the highest in Bayanairag sample (95.38%). As a result of microwave nitric solution experiment on Au concentrate sample obtained by flotation, the content of Au in the microwave nitrate leaching residue increased by 12.15% from 192.72 g/ton to 216.14g/ton in Khamo sample, the highest increase was 57.58% in Bayanairag sample. TCLP tests on tailings generated after flotation showed dissolution characteristics within EPA. Chloride leaching test was performed to recover Au from solid residues. The leaching rate was 87.43-89.35% within 10 minutes. For Khamo sample, 100% Au was leached after 60 minutes of leaching time. Therefore, in order to process the tailings continuously generated in Mongolia, applying the same process as the present study is expected to effectively recover the valuable resources contained in the tailings.

Establishment of an Analytical Method for Determination of Fungicide Oxathiapiprolin in Agricultural Commodities using HPLC-UV Detector (HPLC-UVD를 이용한 농산물 중 살균제 Oxathiapiprolin의 잔류분석법 확립)

  • Jang, Jin;Kim, Heejung;Do, Jung Ah;Ko, Ah-Young;Lee, Eun Hyang;Ju, Yunji;Kim, Eunju;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.186-193
    • /
    • 2016
  • An analytical method was developed for the determination of oxathiapiprolin in agricultural commodities. Oxathiapiprolin is a new oomycide (fungicide of piperidinyl thiazole isoxazoline class) which controls downy mildew in cucurbits caused by Pseudoperonospora cubensis (oomycete plant pathogen). Agricultural commodities were extracted with acetonitrile and partitioned with dichloromethane to remove the interference, adjusting pH between 9 and 10 by 1 N sodium hydroxide. After purification by silica SPE cartridge to clean up the interference of organic compounds, they were finally quantified by HPLC-UVD (high performance liquid chromatograph ultraviolet detector) using a wavelength at 260 nm and confirmed by LC-MS (liquid chromatograph mass spectrometer) in electro-spray ionization positive ion mode. The standard calibration curve was linear with coefficients of determination ($r^2$) 1.00 over the calibration ranges (0.025-2.5 mg/L). Recoveries were ranged between 86.7 to 112.7%, with relative standard deviations less than 10% at three concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates. The overall results were determined and estimated according to the CODEX guidelines (CAC/GL40). The proposed method for determination of oxathiapiprolin residues in agricultural commodities can be used as an official method.

Analysis of Four Pesticides, Isoproturon, Phenmedipham, Pyridate and Nitenpyram Residues by High-Performance Liquid Chromatography with Diode-Array Detector (HPLC를 이용한 Isoproturon, Phenmedipham, Pyridate 및 Nitenpyram 4종 성분의 잔류농약 분석법 개발)

  • Yang, Sung-Yong;Koo, Yun-Chang;Wang, Zeng;Heo, Kyeong;Kim, Hyeong-Kook;An, Eun-Mi;Shin, Han-Seung;Lee, Jin-Won;Lee, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1165-1170
    • /
    • 2010
  • A method for the determination of four pesticide compounds, urea (isoproturon), bis-carbamate (phenmedipham), thiocarbamate (pyridate) and vinyllidenediamine (nitenpyram) were examined and analyzed by HPLC with C-18 column ($250\;mm{\times}4.6\;mm$, $5\;{\mu}m$ diameter particle size). Mobile phase consisted of deionized water, acetonitrile and 50 mM $KH_2PO_4$ (pH 2.5). Isoproturon and phenmedipham analytical condition was isocratic elution of the column with 50% solvent A (acetonitrile) and 50% solvent B (deionized water); pyridate was 85% solvent A (acetonitrile) and 15% solvent B (deionized water) at a flow rate of 1 mL/min; and nitenpyram analytical condition was 90% solvent A (50 mM $KH_2PO_4$, pH 2.5) and 10% solvent B (acetonitrile) at a flow rate of 1 mL/min. In results, retention times were 6.12, 8.63, 9.40 and 12.76 min for isoproturon, phenmedipham, pyridate and nitenpyram, respectively. All injection volumes were $10\;{\mu}L$ and the limit of quantitation was 0.05 mg/kg for four pesticide compounds, respectively. Recovery rate test was performed with three farm products, rice, apple and soybean. Four pesticide compounds were spiked at concentrations of 0.05, 0.1 and 0.5 mg/kg. The recovery rates were ranged from 70.18% to 118.08% and the standard deviations of all experiments were within 10%.

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites (버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거)

  • Eom, Won-Suk;Lee, Doo-Hee;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2013
  • In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.