• 제목/요약/키워드: Residual thickness

검색결과 533건 처리시간 0.03초

압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가 (Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor)

  • 심재준;한근조;김태형;한동섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

접착제의 두께와 열 응력에 따른 조인트의 토크 특성 (Effects of the Adhesive Thickness and Residual Thermal Stress on the Torque Capacity of Turbular Single Lap Joints)

  • 최진호;이대길
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1841-1852
    • /
    • 1992
  • 본 연구에서는 Fig.1과 같이 원형튜브 형태로된 시편과 실린더 형태의 시편을 Single Lap Joint의 형태로 접착하여 접착제의 두께에 대한 정적 비틀림 강도특성을 실험하였으며, 접착제의 경화시 외부에서 가해주는 열로 인한 열 잔류응력의 영향에 대한 연구를 수행하였다. 또한 이론적인 해석과 상용 프로그램인 ANSYS를 이용하여 유한요소해석을 병형하여 실험결과와 비교 검토하였다.

UNS N06690 제1열 시제전열관의 U-굽힘성형에서 형상변화와 표면잔류응력 (Geometric variations and surface residual stresses in U-bending processes of an UNS N06690 row-1 heat exchanger tubes)

  • 김우곤;장진성;국일현;주진원;김성청
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.238-246
    • /
    • 1998
  • Surface residual stresses as well as wall thickness and ovality changes after U-bending process on UNS N06690 row-1 heat exchanger tubes, were estimated. Surface residual stresses were measured by Hole Drilling Method(HDM), calculating the stresses from relieved strains of 3 rosette strain gages. After bending of the tubes, dimensional tolerances for wall thickness and ovality were satisfied with ASTM requirements. Residual stresses at the extrados were introduced with compressive stress(-) by bending operations, and its maximum value reached-319 MPa in axial direction at ${\phi}=0^{\circ}$ in position. Tensile residual stresses(+) of ${\sigma}_zz=45$ MPa,${\sigma}_zz=25$ MPa were introduced in the intrados surface at position of ${\phi}=0^{\circ}$ Maximum tensile residual stress of 170 MPa was detected on the flank side at position of ,${\phi}=95^{\circ}$i.e., at apex region. It appeared that higher stress gradients were generated at the irregular transition regions. In the trend of residual stress changes with U-bend position, the extrados is related with the changes of ovality and the intrados is related with the changes of wall thickness.

레지스트 잔류층 두께와 몰드 유입속도가 기포결함에 미치는 영향에 대한 수치해석 (Numerical Analysis of Effects of Velocity Inlet and Residual Layer Thickness of Resist on Bubble Defect Formation)

  • 이우영;김남웅;김동현;김국원
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.61-66
    • /
    • 2015
  • Recently, the major trends of NIL are high throughput and large area patterning. For UV NIL, if it can be proceeded in the non-vacuum environment, which greatly simplifies tool construction and greatly shorten process times. However, one key issue in non-vacuum environment is air bubble formation problem. In this paper, numerical analysis of bubble defect of UV NIL is performed. Fluent, flow analysis focused program was utilized and VOF (Volume of Fluid) skill was applied. For various resist-substrate and resist-mold angles, effects of velocity inlet and residual layer thickness of resist on bubble defect formation were investigated. The numerical analyses show that the increases of velocity inlet and residual layer thickness can cause the bubble defect formation, however the decreases of velocity inlet and residual layer thickness take no difference in the bubble defect formation.

Shadow Mask용 냉간 압연박판의 잔류응력 해석 (Residual Stress Analysis of Cold Rolled Sheet in Shadow Mask)

  • 정호승;조종래;문영훈;김교성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2002
  • Residual stress of sheet occurs during cold rolling and it is hard to avoid and inevitable. The residual stress in the sheet cause etching curls when it suffers peroration process. The residual stress through the thickness direction in the sheet is a function of a friction coefficient, total reduction, mil size and initial sheet thickness. To estimate the residual stress and deformation due to etching curl, FEM analysis is performed. A numerical analysis is used a ANSYS 5.6 and an elastic-plastic constitutive equations. rho simulation results indicate a distribution of residual stress.

  • PDF

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

열성형 공정에서 발생하는 필름의 잔류응력 및 스프링 백에 관한 연구 (A study on the residual stress and spring back of thermoformed films)

  • 박두용;박동현;이호상
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2022
  • Thermoforming is a plastic manufacturing process that applies a force to stretch a film of heated thermoplastic material over an engineered mold to create a 3-dimensional shape. After forming, the shaped part can then be trimmed and finished to specification to meet an end-user's requirements. The process and thermoplastic materials are extremely versatile and can be utilized to manufacture parts for a very wide range of applications. In this study, based on K-BKZ nonlinear viscoelastic model, thermoforming process analysis was performed for an interior room-lamp. The predicted thickness was minimum at the corner of a molded film, and maximum at the center of the bottom. By using the Taguchi method of design of experiments, the effects of process conditions on residual stresses were investigated. The dominant factors were the liner thickness and the film heating time. As the thickness of the liner increased, the residual stress decreased. And it was found that the residual stress decreased significantly when the film heating temperature was higher than the glass transition temperature. A thermoforming mold and a trimming mold were manufactured, and the spring back was investigated through experiments. The dominant factors were film heating time, liner thickness, and lower mold temperature. As the film heating time and liner thickness increased, the spring back decreased. In addition, it was found that the spring back decreased as the lower mold temperature increased.

피로 균열 성장 지연에 대한 중성자 회절 응력 분석 (Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction)

  • 서석호;;우완측;이수열
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.398-404
    • /
    • 2018
  • Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.

도자기 소지와 유약의 잔류 응력이 기계적 강도에 미치는 영향에 관한 연구 (A Study on the Effect of Residual Stress between Body and Glaze of Pottery on the Mechanical Strength)

  • 이진하;나은상;최성철
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.181-187
    • /
    • 1999
  • In this study, the effect of residual stress on mechanical strength was investigated with 1 kind of whiteware body and 4 kinds of glazes which are produced in succeeding ceramic art place. Using dipping method, the body was coated for different times in order to manipulate the coating thickness and sintered in the different temperatures ($1200^{\circ}C$, $1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for two thus hours. The sintered bodies were characterized by XRD, EPMA, FEM and UTM in order to study the forming of reaction layer between body and glazes, residual stresses and the effects of residual stresses on mechanical strength of pottery. At $1300{\circ}C$, we obtained maximum density and mechanical strength. By the finite element method, the residual stresses in surface of body were minimum in specific thickness of glazes and the mechanical strength of body in that thickness of glazes showed maximum when the firing temperature was settled.

  • PDF