DOI QR코드

DOI QR Code

Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction

피로 균열 성장 지연에 대한 중성자 회절 응력 분석

  • Seo, Sukho (Department of Materials Science and Engineering, Chungnam National University) ;
  • Huang, E-Wen (Department of Materials Science and Engineering, National Chiao Tung University) ;
  • Woo, Wanchuck (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Lee, Soo Yeol (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2018.04.30
  • Accepted : 2018.06.10
  • Published : 2018.07.27

Abstract

Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.

Keywords

References

  1. J. D. Almer, J. B. Cohen and R. A. Winholtz, Metall. Mater. Trans. A, 29, 2127 (1998). https://doi.org/10.1007/s11661-998-0038-9
  2. P. J. Withers and H. K. D. H. Bhadeshia, Mater. Sci. Techol., 17, 355 (2001). https://doi.org/10.1179/026708301101509980
  3. D. J. Hornbach, and P. S. Prevey, J. Press. Vessel Technol., 124, 359 (2002). https://doi.org/10.1115/1.1481035
  4. S. Xu, C. Wang and W. Wang, Eng. Fail. Anal., 51, 1 (2015). https://doi.org/10.1016/j.engfailanal.2015.02.005
  5. A. Steuwer, M. Rahman, A. Shterenlikht, M. E. Fitzpatrick, L. Edwards and P. J. Withers, Acta Mater., 58, 4039 (2010). https://doi.org/10.1016/j.actamat.2010.03.013
  6. S. Y. Lee, P. K. Liaw, H. Choo and R. B. Rogge, Acta Mater., 59, 485 (2011). https://doi.org/10.1016/j.actamat.2010.09.049
  7. S. Y. Lee, H. Choo, P. K. Liaw, K. An and C. R. Hubbard, Acta Mater., 59, 495 (2011). https://doi.org/10.1016/j.actamat.2010.09.048
  8. R. Barabash, Y. Gao, Y. Sun, S. Y. Lee, H. Choo, P. K. Liaw, D. W. Brown and G. E. Ice, Philos. Mag. Lett., 88, 553 (2008). https://doi.org/10.1080/09500830802311080
  9. A. J. McEvily, S. Ishihara and Y. Mutho, Int. J. Fatigue, 26, 1311 (2004). https://doi.org/10.1016/j.ijfatigue.2004.04.008
  10. G. Wheatley, X. Z. Hu, and Y. Estrin, Fatigue Fract. Engng. Mater. Struct., 22, 1041 (1999). https://doi.org/10.1046/j.1460-2695.1999.00225.x
  11. I. Nikitin and M. Besel, Mater. Sci. Eng., A, 491, 297 (2008). https://doi.org/10.1016/j.msea.2008.03.034
  12. P. Lopez-Crespo, P. J. Withers, F. Yusof, H. Dai, A. Steuwer, J. F. Kelleher and T. Buslaps, Fatigue Fract. Engng. Mater. Struct., 36, 75 (2013). https://doi.org/10.1111/j.1460-2695.2012.01670.x
  13. G. Hinds, L. Wickström, K. Mingard and A. Turnbull, Corros. Sci., 71, 43 (2013). https://doi.org/10.1016/j.corsci.2013.02.002
  14. P. Lopez-Crespo, A. Steuwer, T. Buslaps, Y. H. Tai, A. Lopez-Moreno, J. R. Yates and P. J. Withers, Int. J. Fatigue, 71, 11 (2015). https://doi.org/10.1016/j.ijfatigue.2014.03.015
  15. M. Croft, V. Shukla, N. M. Jisrawi, Z. Zhong, R. K. Sadangi, R. L. Holtz, P. S. Pao, K. Horvath, K. Sadananda, A. Ignatov, J. Skaritka and T. Tsakalakos, Int. J. Fatigue, 31, 1669 (2009). https://doi.org/10.1016/j.ijfatigue.2009.01.020
  16. E. W. Huang, S. Y. Lee, W. Woo and K. W. Lee, Metall. Mater. Trans. A, 43, 2785 (2012). https://doi.org/10.1007/s11661-011-0904-8
  17. G. Choi, M. H. Lee, E. W. Huang, W. Woo and S. Y. Lee, Korean J. Mater. Res., 25, 690 (2015). https://doi.org/10.3740/MRSK.2015.25.12.690
  18. S. Seo, E. W. Huang, W. Woo and S. Y. Lee, Int. J. Fatigue, 104, 408 (2017). https://doi.org/10.1016/j.ijfatigue.2017.08.007
  19. American Society for Testing and Materials (ASTM). Standard Test Method for Measurement of Fatigue Crack- Growth Rates; ASTM Standard E647-99; American Society for Testing Materials: West Conshohocken, PA, USA, 591 (2000).
  20. J. W. L. Pang, T. M. Holden and T. E. Mason, Acta Mater., 46, 1503 (1998). https://doi.org/10.1016/S1359-6454(97)00369-8