• 제목/요약/키워드: Residual stress and plastic strain

검색결과 112건 처리시간 0.024초

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

박판재의 스프링백 해석(I)-잔류 변형율에 근거한 해석모델 (Analysis of Springback of Sheet Metal(I): Analytical Model Based on the Residual Differential Strain)

  • 이재호;김동우;손성만;이문용;문영훈
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.509-515
    • /
    • 2007
  • As the springback of sheet metal during unloading may cause deviation from a desired shape, accurate prediction of springback is essential for the design of sheet stamping operations. When considering the case of a sheet metal being bent to radius $\rho$ that is such that the maximum stress induced exceed the elastic limit of the material, plastic strain in the outer surface will occur and the material will take a permanent set: but since, on removing the bending moment, the recovery of the material is not uniform across the thickness, springback will occur and the radius $\rho$ will not be maintained. Furthermore, when a tensile load being applied to each end of specimen, the tensile stress due to bending is increased and the compressive stress is decreased or cancelled and eventually the whole specimen may be in varying degree of tension. On the removal of the applied load the specimen loses its elastic strain by contracting around the contour of the block, the radius $\rho$ will be determined by the residual differential strain. Therefore in this study the springback is analytically estimated by the residual differential strains between upper and lower surfaces of greatest radius after elastic recovery, and a springback model based on the bending moment is also analytically derived for comparison purpose.

Alumina/SiC 나노복합재료에서의 잔류 열응력 완화거동에 관한 연구 (Thermal Residual Stress Relaxation Behavior of Alumina/SiC Nanocomposites)

  • Choa, Y.H.;Niihara, K.;Ohji, T.;Singh, J.P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2002년도 춘계학술강연 및 발표대회
    • /
    • pp.11-11
    • /
    • 2002
  • Plastic deformation was observed by TEM around the intragranular SiC particles in the $Al_2O_3$ matrix for $Al_2O_3/SiC$ nanocomposite system. The dislocations are generated at selected planes and there is a tendency for the dislocations to form a subgrain boundary structure with low-angel grain boundaries and networks. In this study, dislocation generated in the $Al_2O_3$ matrix during cooling down from sintering temperatures by the highly localized thermal stresses within and/or around SiC particles caused from the thermal expansion mismatch between $Al_2O_3$ matrix and SiC particle was observed. In monolithic $Al_2O_3$ and $Al_2O_3/SiC$ microcomposite system. These phenomena is closely related to the plastic relaxation of the elastic stress and strain energy associated with both thermal misfitting inclusions and creep behaviors. The plastic relaxation behavior was explained by combination of yield stress and internal stress.

  • PDF

TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 잔류응력 해석 (Analysis of Residual Stress on Dissimilar Butt Joint by TIG Assisted Hybrid Friction Stir Welding)

  • 방희선;노찬승;엠 에스 비조이;방한서;이윤기
    • Journal of Welding and Joining
    • /
    • 제30권2호
    • /
    • pp.47-53
    • /
    • 2012
  • This paper aimed to study and understand the mechanical phenomena of thermal elasto-plastic behavior on the dissimilar butt joint (Al 6061-T6 and STS304) by TIG assisted Friction Stir Welding. Heat conduction and residual stress analysis is carried out using in-house solver. Two-dimensional results of the heat distribution and residual stresses in dissimilar joint for particular tool geometry and material properties are presented. The predicted stress along longitudinal direction in Al 6061-T6 and STS304 are approximately between 12-15% of their respective yield strengths. A comparison is made between experimentally measured and numerically predicted equivalent residual stress values.

연속체 손상역학을 이용한 용접구조물의 수치피로시험기법 (Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics)

  • 이치승;김영환;김태우;유병문;이제명
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

케미칼 크랙킹 방법을 이용한 플라스틱 제품의 응력측정에 관한 연구 (A Study on the Stress Measurement in a Plastic Product using Chemical Cracking Method)

  • 원시태;김태범;이실;원정민;차규호;류민영
    • Elastomers and Composites
    • /
    • 제47권4호
    • /
    • pp.336-340
    • /
    • 2012
  • 사출성형품에서 잔류응력은 성형공정 중 열과 전단응력에 의해 형성된다. 잔류응력을 평가하는 방법은 여러 가지가 있는데, 불투명한 제품에서의 잔류응력은 케미칼 크랙킹 테스트 방법으로 측정 할 수 있다. 이 방법은 시편과 솔벤트가 반응하게 하여 측정하는 방법이다. 크랙은 응력의 크기에 따라 형성되기 때문에 크랙의 크기나 수를 측정하여 응력을 정량적으로 측정한다. 본 연구에서는 케미칼 크랙킹 방법으로 잔류응력을 측정하기 위한 기초자료인 응력과 크랙과의 관계를 규명하기 위한 실험을 수행하였다. 시편을 제작하기 위한 재료는 PC/PBT와 PC/ABS사용하였으며 지그를 이용하여 시편을 변형을 주고 이를 솔벤트에 담궈서 크랙을 유도하였다. 솔벤트는 tetrahydrofuran과 methyl alchol을 이용하여 제조하였다. 두 재료 모두 응력이 어느 정도 이상에서만 크랙이 형성되었으며, 크랙은 응력이 증가함에 따라 대략 2차함수로 증가하였다.

21/4Cr-1Mo강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구 (A Study on the Reheat Crack around Welded Joint of Pressusre Vessel with 21/4Cr-1Mo Steel)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.227-227
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, 2 ¼Cr-1Mo steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence. (Received December 2, 1999)

$2\frac{1}{4}Cr-1Mo$강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구 (A Study on the Reheat Crack around Welded Joint of Pressure Vessel with $2\frac{1}{4}Cr-1Mo$ Steel)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.100-104
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, $2\frac{1}{4}Cr-1Mo$ steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence.

  • PDF

Relationship between hardness and plastically deformed structural steel elements

  • Nashid, Hassan;Clifton, Charles;Ferguson, George;Hodgson, Micheal;Seal, Chris;Choi, Jay-Hyouk
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.619-637
    • /
    • 2015
  • A field based non-destructive hardness method is being developed to determine plastic strain in steel elements subjected to seismic loading. The focus of this study is on the active links of eccentrically braced frames (EBFs). The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems into their inelastic state, generating a moderate to high level of plastic strain in EBF active links for a range of buildings from 3 to 23 storeys in height. Plastic deformation was confined to the active links. This raised two important questions: what was the extent of plastic deformation and what effect does that have on post-earthquake steel properties? A non-destructive hardness test method is being used to determine a relationship between hardness and plastic strain in active link beams. Active links from the earthquake affected, 23-storey Pacific Tower building in Christchurch are being analysed in the field and laboratory. Test results to date show clear evidence that this method is able to give a good relationship between plastic strain and demand. This paper presents significant findings from this project to investigate the relationship between hardness and plastic strain that warrant publication prior to the completion of the project. Principal of these is the discovery that hot rolled steel beams carry manufacturing induced plastic strains, in regions of the webs, of up to 5%.

예비변형률 효과를 고려한 고변형률 속도에서의 차체용 강판의 물성 특성 (Characterization of the Material Properties of Sheet Metal for Auto-body at the High Strain Rate Considering the Pre-strain Effect)

  • 김석봉;임지호;허훈;임종대
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.204-210
    • /
    • 2004
  • Most auto-body members fabricated by the sheet metal forming process. During this process the thickness and material properties of the sheet metal are changed with the residual stress and plastic strain. This paper deals with the material properties of the sheet metal at the high strain rate considering the pre-strain effect. Specimens are selected from sheet metals for outer panels and inner members, such as SPCEN, SPRC45E, SPRC35R and EZNCD. The specimens are prepared with the pre-strain of 2, 5 and 10 % by tensile elongation in Instron 5583, which could be equivalent to the plastic strain in sheet metal forming. High speed tensile tests are then carried out with the pre-stained specimens at the strain rate of 1 to 100/sec. The experimental result informs that the material properties are noticeably influenced by the pre-strain when the yield stress of the specimens is moderate as SPCEN, SPRC35R and EZNCD. The result also demonstrates that the ultimate tensile strength as well as the yield stress is increased as the amount of the pre-strain is increased.