• Title/Summary/Keyword: Residual solvent

Search Result 133, Processing Time 0.032 seconds

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

The effect of solvent evaporation of dentin adhesive on bonding efficacy (상아질 접착제의 용매 증발이 접착 효율에 미치는 영향)

  • Cho, Min-Woo;Kim, Ji-Yeon;Kim, Duck-Su;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.321-334
    • /
    • 2010
  • Objectives: The purpose of this study is to evaluate bonding efficacy by means of measuring the effect of remained solvent on Degree of conversion(DC) and ${\mu}TBS$ and FE-SEM examination. Materials and Methods: Two 2-step total etching adhesives and two single-step self etching adhesives were used in this study. First, volume weight loss of 4 dentin adhesives were measured using weighting machine in process of time in normal conditions and calculate degree of evaporation (DE). Reaction/reference intensity ratio were measured using micro-Raman spectroscopy and calculate DC according to DE. Then 2 experimental groups were prepared according to air-drying methods (under, over) and control group was prepared to manufacturer's instruction. Total 12 groups were evaluated by means of micro tensile bond strength and FE-SEM examination. Results: Degree of evaporation (DE) was increased as time elapsed but different features were observed according to the kind of solvents. Acetone based adhesive showed higher DE than ethanol and butanol based adhesive. Degree of conversion (DC) was increased according to DE except for $S^3$ bond. In ${\mu}TBS$ evaluation, bond strength was increased by additional air-drying. Large gaps and droplets were observed in acetone based adhesives by FE-SEM pictures. Conclusions: Additional air-drying is recommended for single-step self etching adhesive but careful consideration is required for 2-step total etching adhesive because of oxygen inhibition layer. Evaporation method is carefully chose and applied according to the solvent type.

A Study on the Extraction of Monasil PCA using Liquid CO2 (액체 이산화탄소 이용한 Monasil PCA 추출에 대한 연구)

  • Cho, Dong Woo;Oh, Kyoung Shil;Bae, Won;Kim, Hwayong;Lee, Kab-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.684-689
    • /
    • 2012
  • Poly(acrylic acid) (PAA) microspheres is one of the widely-used polymeric materials for the bio-field application and the electric materials. For the synthesis of PAA microspheres, the polymerization technique using surfactants is applied. After the synthesis, the purification and separation processes are required for the removal of surfactant. When general organic solvents were used, many problems, such as huge amount of waste solvent, additional separation processes, and the possibility of residual media, were occurred. Thus, High-pressure Soxhlet extraction using liquid $CO_2$ was developed to solve these problems. In this study, High-pressure Soxhlet extraction of the synthesized PAA microspheres using liquid $CO_2$ was conducted for the removal of Monasil PCA which is used for the dispersion polymerization of acrylic acid in compressed liquid Dimethyl ether (DME). The morphology of the extracted PAA particles was checked by field emission scanning electron microscopy (FE-SEM) and the residual concentration of Monasil PCA was analyzed by inductively coupled plasma - Optical Emission Spectrometer (ICP-OES). For studying the effect of the solvent effect, Soxhlet extraction was conducted using n-hexane, liquid DME, and liquid $CO_2$. In case of n-hexane, some extracted PAA microspheres were produced. However, deformation was also occurred due to the high thermal energy of n-hexane vapor. Liquid DME could not remove Monasil PCA. When using liquid $CO_2$, the extracted PAA microspheres which were free for the residual solvent were produced without deformation. For finding the optimum operating condition, high-pressure Soxhlet extraction was conducted for 8 hours with changing the temperature of reboiler and condenser. When the extractor temperature is $19.6{\pm}0.2^{\circ}C$ and the pressure is $51.5{\pm}0.5$ bar, the best removal efficiency was obtained.

Evaluation of A Removal Process for the Residual Uranium from the Simulated Radwaste Solution by Solvent Extraction with TBP (TBP 용매추출에 의한 잔존 우라늄 제거공정 평가)

  • Lee, Eil-Hee;Kim, Kwang-Wook;Lim, Jae-Gwan;Kwon, Seon-Gil;Yoo, Jae-Hyung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.232-237
    • /
    • 1998
  • This study was carried out to find the optimal operating conditions for separation of residual uranium from the simulated radwaste solution containing 19 elements, and to evaluate the validity of the process. The selected process was based on the solvent extraction with TBP(tributyl phosphate). As an extractor, two miniature mixer-settlers with a total of 18 stages were used. Extraction yield of U, Np and Tc was about 99.2%. 32.1%, and 99.9%, respectively. The other elements were coextracted in the range of 1~4%. Extraction yield of U exceeded those of the previous work performed with batch system, which resulted in the low extractability of U (about 80%) according to the coexisting element such as Nd and Fe. It was due to the characteristics of multi-stage extractor. On the other hand, low extractability of Np was caused by various oxidation states in the nitric acid medium. In the case of Tc, its high extractability may be attributed to the complex formation with Zr and U, which is not well proved yet. All elements extracted with TBP were stripped into aqueous phase more than 99% by 0.01M $HNO_3$. From the results, this process has no problem with respect to in the same step was required, because Np was distributed in the raffinate and U product, respectively.

  • PDF

Study on Kinetics and Thermodynamics of Rotary Evaporation of Paclitaxel for Removal of Residual Pentane (파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구)

  • Han, Jang Hoon;Ji, Seong-Bin;Kim, Ye-Sol;Lee, Seung-Hyun;Park, Seo-Hui;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.807-815
    • /
    • 2017
  • This study investigated the removal efficiency of residual pentane from paclitaxel according to the drying temperature in the case of rotary evaporation, and performed a kinetic and thermodynamic analysis of the drying process. At all the temperatures (25, 30, 35, 40, and $45^{\circ}C$), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Five drying models (Newton, Page, modified Page, Henderson and Pabis, Geometric) were then used for the kinetic analysis, where the Henderson and Pabis model showed the highest coefficient of determination ($r^2$) and lowest root mean square deviation (RMSD), indicating that these models were the most suitable. Furthermore, in the thermodynamic analysis of the rotary evaporation, the activation energy ($E_a$) was 4.9815 kJ/mol and the standard Gibbs free energy change (${\Delta}G^0$) was negative, whereas the standard enthalpy change (${\Delta}H^0$) and standard entropy change (${\Delta}S^0$) were both positive, indicating that the drying process was spontaneous, endothermic, and irreversible.

Residual characteristics of insecticide flubendiamide in kale (케일 중 살충제 Flubendiamide의 잔류 특성)

  • Kim, Hyun-Jin;Hwang, Kyu-Won;Sun, Jung-Hun;Lee, Tae-Hyun;Jeong, Kyoung-Su;Moon, Joon-Kwan
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.173-181
    • /
    • 2022
  • This study was carried out to investigate the residual characteristics of flubendiamide in kale to establish pre-harvest residue limits (PHRL) and the removal efficiency according to the washing solvent and method. Field tests were conducted at two different greenhouses, field 1 (Anseong-si, Gyeonggi-do) and field 2 (Incheon-si, Gyeonggi-do). According to the safe use guidelines kale was sprayed with flubendiamide twice every 10 days and harvested 0 (after 2 h), 1, 2, 3, 5, 7 and 10 days after the final application. The biological half-live of flubendiamide in kale was calculated based on dissipation curves of the pesticide in samples analyzed by liquid chromatography coupled with tandem mass spectrometry. In the analysis, method limits of quantitation (MLOQ) were 0.01 mg/kg, and recoveries performed with two different fortification levels of 10 MLOQ and maximum residue limit (0.7 mg/kg) were 104.2±3.6 and 101.9±10.2%, respectively. The dissipation rate constant of flubendiamide in kales were 0.2437 at field 1 and 0.1981 at field 2. PHRL calculation equations obtained using the dissipation constants estimated as follows: if the residual concentration of flubendiamide in kale on 10 days before harvest is less than 8.0 mg/kg, the residual concentration on the harvest would be under MRL. The removal of flubendiamide from kale was the greatest when it was washed with vinegar (39.8%), followed by baking soda (31.7%), calcium powder (30.2%), neutral detergent (27.2%), and tap water (15.9%). The results of this study would be useful for both farmers and consumers to produce or consume safe agricultural products.

Residual Pesticide Analysis Method of Edible Oil via Heat Distillation Methods (가열증류법에 의한 식용유지의 잔류농약 분석법 개발)

  • Mi-Hui Son;Jae-Kwan Kim;Young-Seon Cho;Na-Eun Han;Byeong-Tae Kim;Myoung-Ki Park;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Currently, no guidelines exist regarding the maximum residues of pesticides in edible oil which is a processed food commonly consumed in Korea. This lack of guidelines hinders the evaluation of the safety of edible oil in terms of pesticide contamination. In this study, an analysis method based on heat distillation and GC-MS/MS was established by optimizing the extraction and purification procedure for 68 pesticides. Important variables in the thermal distillation procedure included heating temperature and time, and we found the nitrogen flow rate as a mobile phase and the type of dissolving solvent were not considerably affected. The determination coefficient (R2) of the residual pesticide was 0.99 or higher, and the quantitative limit (LOQ) was 0.01-0.02 mg/L. The average recovery rate (n=5) was 66.1-120.0% and the relative standard deviation was lower than ±10% when 68 pesticides were spiked at concentrations of 0.01-0.02, 0.1, and 0.5 mg/L. In addition, the within-laboratory precision was less than ±11%, meeting the Korea Food and Drug Safety Evaluation Institute's Guidelines on Standard Procedures for Preparing Food Testing Methods (2016). Therefore, the test method developed in this study can be used as a test method for managing the safety of the residual pesticide concentration in edible oil.

Preliminary Source Apportionment of Ambient VOCs Measured in Seoul Metropolitan Area by Positive Matrix Factorization (PMF를 이용한 수도권지역 VOCs의 배출원 추정)

  • Han J. S.;Moon K. J.;Kim R. H.;Shin S. A.;Hong Y. D.;Jung I. R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.85-97
    • /
    • 2006
  • The PAMS data collected at four sites in Seoul metropolitan area in 2004 were analyzed using the positive matrix factorization (PMF) technique, in order to identify the possible sources and estimate their contributions to ambient VOCs. Ten sources were then resolved at Jeongdong, Bulgwang, Yangpyeong, and Seokmo, including vehicle exhaust, LPG vehicle, petroleum evaporation, coating, solvent, asphalt, LNG, Industry & heating, open burning, and biogenic source. The PMF analysis results showed that vehicle exhaust commonly contributed the largest portion of the predicted total VOCs mass concentration, more than $30\%$ at four sites. The contribution of other resolved sources were significantly different according to the characteristics of site location. In the case of Jeongdong and bulgwang located in urban area, various anthropogenic sources such as coating, solvent, asphalt, residual LPG, and petroleum evaporation contributed about $40\%$ of total VOCs mass. On the other hand, at yangpyeong and Seokmo located in rural and remote area, the portion of these anthropogenic sources was reduced to less than $30\%$ and the contribution of natural sources including open burning and biogenic source clearly observed. These results were considerably corresponding to the emission inventory investigated in this region.

Separation and recovery of semi-volatile substances of Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus by reduced pressure collections and GC-MS

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • When extracting semi-volatile components of herbal medicines using hot water vapor, some substances may react with water vapor or oxygen, and some volatile substances may be lost, when using an organic solvent extraction method has the disadvantage that it may contain a non-volatile material and residual organic solvent. In addition, it is inefficient to separate semi-volatile substances from herbal medicines into each single component and conduct biological activity research for each component to determine the effective ingredient, and some components may be lost in the separation process. In this study, semi-volatile substances evaporated under two pressure-reduced conditions in Chinese herbal medicines such as Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were separated by cooling with liquid nitrogen. Those were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify the components, and this method may be used to study biological activities at the cellular level. The substances separated under reduced pressure, essential oil obtained by simultaneous distillation extraction (SDE) method and substances by using solid phase micro-extraction (SPME) from Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were analyzed by GC-MS. In the case of Cnidii Rhizoma and Aucklandiae Radix, there were some differences among the essential oil components obtained by SDE and those identified by low temperature capture (CT) and SPME method, these were believed to be produced by some volatiles reacting with water or oxygen at the boiling point temperature of water.

Design of Spinning and Subsequent Drawing Parameters to Improve the Mechanical Properties of PVA Fibers

  • Chae, Dong Wook;Kim, Seung Gyoo;Kim, Byoung Chul
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.125-133
    • /
    • 2016
  • In this study, efforts were made to enhance the mechanical properties of the poly(vinyl alcohol) (PVA) fibers of medium molecular weight(number-average degree of polymerization=1735) varying the ratio in $DMSO/H_2O$ mixed solvent and spinning/drawing conditions. The gel fibers prepared from pure DMSO were opaquely frozen in the coagulating bath of $-20^{\circ}C$. However, transparent gel fibers were formed without freezing for the mixture to contain water less than 80wt%. As the amount of water in the mixture increased the residual solvent in the coagulated gel fibers decreased ranging from 85 to 42wt%. The complex viscosity increased with increasing PVA concentration in 80/20 $DMSO/H_2O$ exhibiting remarkable shear thinning at 18wt%. In the Cole-Cole plot, the 18wt% PVA solutions gave a deviated curve from 12 and 15wt% ones. Thus the optimum PVA concentration for the spinning processing of medium MW PVA solutions in 80/20 $DMSO/H_2O$ was determined to 18wt% with rheological concept. Low degree of drawing during hot drawing process in the dry state was available for high bath draft in the coagulation bath. The most improved mechanical properties were observed by applying the highest possible draw ratio attained by reducing bath draft over multi-step drawing process. In the given bath draft, linear relationship was observed between both tensile strength and modulus and draw ratio showing the inflection points at the draw ratio of 19.5 and 18.0 for tensile strength and modulus, respectively.