• Title/Summary/Keyword: Residual soils

Search Result 304, Processing Time 0.025 seconds

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Dong-Seok;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.314-323
    • /
    • 2010
  • Recently, granular soils having a large particle size are frequently used as a filling material in the construction of foundation, harbor, dam, and so on. The shear behavior of this granular soil plays a key role in the stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause the disturbance of ground characteristics and consequently induce an issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Using the crushing model and non-crushing model which were created in this study, numerical analyses of ring shear test were conducted and their results were analyzed and compared. In general, landslide and slope stability are accompanied by a large displacement and consequently not only a peak strength but also a residual strength are very important in the analysis of landslide and slope stability. However the direct shear test which has been commonly used in the determination of shear strength parameters has a limitation on displacement therefore the residual strength parameters can not be obtained. The characteristics of residual shear behavior were investigated through the numerical analyses in this study.

  • PDF

Impact of Residual Hydrofluoric Acid on Leaching of Minerals and Arsenic from Different Types of Geological Media (잔류 불산에 의한 모델 지질토양시료의 광물 용해 및 비소 용출 특성)

  • Jeon, Pilyong;Moon, Hee Sun;Shin, Doyun;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • This study explored secondary effects of the residual hydrofluoric acid (HF) after a hypothetical acid spill accident by investigating the long-term dissolution of minerals and leaching of pre-existing arsenic (As) from two soil samples (i.e., KBS and KBM) through batch and column experiments. An increase in the HF concentration in both soil samples resulted in a dramatic increase in the release of major cations, especially Si. However, the amounts of mineral dissolved were dependent on the soil type and mineral characteristics. Compared to the KBM soil, relatively more Ca, Mg and Si were dissolved from the KBS soil. The column experiment showed that the long-term dissolution rates of the minerals are closely associated with the acid buffering capacity of the two soils. The KBM soil had relatively higher effluent pH values compared to the KBS soil. Also, more As was leached from the KBM soil, with a more amorphous hydrous oxide-bound As fraction. These results suggest that the potential of heavy metal leaching by the residual acid after an acid spill will be influenced by heavy metal speciation and mineral structure in the affected soil.

Pile and Ground Responses during Driving of a Long PHC Pile in Deep Soft Clay (대심도 연약지반에서 장대 PHC말뚝의 항타에 따른 지반과 말뚝거동)

  • Kim, Sung-Ryul;Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.131-141
    • /
    • 2007
  • Because pile behavior is governed by geotechnical characteristics of surrounding soils, it is therefore necessary to monitor ground responses during pile driving and analyze the relation between the behaviors of pile and ground. In this research, the 57 m long PHC pile was driven into deep soft clay in the Nakdong River estuary area. During and after the pile driving, the ground responses and the residual load of pile have been monitored for about a year, by using piezometers, inclinometers, level posts for surface settlement, and strain gauges in piles etc. As the results, the residual load by the negative skin friction along the pile increased with the dissipation of the excess pore pressure, which was developed by pile driving and reclamation. About 30% of the maximum residual load developed due to the dissipation of the increased excess pore pressure during the driving. It is thus emphasized that most piles driven in clay deposits need to be designed by considering negative skin friction along the pile.

Time-dependent Deformation Characteristics of Geosynthetic Reinforced Modular Block Walls under Sustained/cyclic Loading (지속하중 및 반복하중 재하시 보강토 옹벽의 잔류변형 특성)

  • Yoo, Chung-Sik;Kim, Young-Hoon;Han, Dae-Hui;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.5-21
    • /
    • 2007
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exit concerns over long-term residual deformation when they are subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependant deformation characteristics of geosynthetic reinforced modular block walls under sustained anuor repeated loads were investigated using reduced-scale model tests. The results indicated that a sustained or repeated load can yield appreciable magnitude of residual deformation, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.

Development of a Pilot-Scale Soil Washing Process (파일롯 규모의 토양세척장치 개발)

  • 장윤영;신정엽;황경엽
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.55-62
    • /
    • 1998
  • Soils contaminated with hydrocarbons and residual metals can be effectively treated by soil washing. In developing the soil washing process several major effects for separating contaminants from coarse soils progressively improved upon combinations of mining and chemical processing approaches. The pilot-scale soils washing process consists of the four major parts : 1) abrasive scouring, 2) scrubbing action using a washwater that is sometimes augmented by surfactants or other agents, 3) rinsing, and 4) regenerating the contaminated washwater. The plant was designed based upon the treatment capacity > 5 ton/hr on site. The lumpy contaminated soil fractions first experience deagglomeration and desliming passing through a rolling mill pipe. In the second unit the attrition scrubbing module equipped with paddles uses high-energy to remove contaminants from the soils. And a final rinsing system is assembled to separate the washwater containing the contaminants and very fine soils from the washed coarse soils. For recycling the contaminated washwater passes through a washwater clarifier specifically designed for flocculation, sedimentation and gravity separation of fine as well as flotation and separation of oils from the washwater. In order to more rapidly assess the applicability of soil washing at a potential site while minimizing the expense of mobilization and operation, a mobile-type soil washing process which is self-contained upon a trailer will be further developed.

  • PDF

Evaluation of Fluoride Distribution, Fate and Transport Characteristics in Soils (토양 중 불소 분포 및 거동 특성 평가)

  • Lim, Ga-Hee;Lee, Hong-Gil;Kim, Hyoung-Seop;Noh, Hoe-Jung;Ko, Hyoung-Wook;Kim, Ji-In;Jo, Hun-Je;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.90-103
    • /
    • 2018
  • Although fluoride is an essential trace element, ingestion of excessive amount of fluoride could have detrimental effect on human health. Generally, the bioavailability of fluoride in soils was low, but it could be harmful to the environment depending on the soil properties. Therefore, it is necessary to understand the concentration distribution, and fate and transport characteristics of fluoride to establish a resonable management strategy for fluoride pollution. This study was conducted to evaluate nationwide fluoride distribution in soils in Korea, as well as its fate and transport characteristics. The average background concentration was 204.5 (15.3~504.8) mg/kg, which is lower than the values of foreign soils. For the three regions of different land use, the average concentration was 229.6 mg/kg in region 1, 195.7 mg/kg in region 2, and 273.4 mg/kg in region 3. The concentration of fluoride was the highest in soils from Youngnam block within tectonic structure derived from metamorphic rocks. The results of sequential extraction to access F bioavailability showed fluoride in soils mainly existed as a residual form, which suggests the bioavailability of fluoride was relatively low. Soil properties such as soil pH, CEC, and clay content were found to affect F bioavailability of soil.

The Effects of Protease and Lipase on the Detergency of Fabrics (프로테아제와 리파제가 직물의 세척에 미치는 영향)

  • Lee, Jeong-Sook;Chung, So-Wha
    • Fashion & Textile Research Journal
    • /
    • v.2 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • The effects of protease and/or lipase on the removal of protein soil and oily soil were investigated in this study. Cotton, rayon, nylon, and PET fabrics were soiled by padding of fresh bovine blood and spotting of mixed artificial sebum evenly. The soiled fabrics were aged at $130^{\circ}C$ for 30 minutes. The fabrics were washed by using Terg-O-Tometer at various conditions. Protease and/or lipase were added in the alcohol ethoxylate (AE) detergent solution. The removal efficiency was evaluated by analysis of protein and/or oil on the fabrics before and after washing, respectively. The detergency of protein and/or oil on the fabrics was discussed with enzyme concentration, washing time, washing temperature, pH of washing solution and fiber characteristics. The hydrolysis of protease improved effectively the removal of oil as well as protein by increasing removal of protein-oil mixed soil at the same time. The effect of lipase added detergent solution was slightly shown on the removal of oil and/or protein. The removal of mixed soils from cotton fabrics was very low because of large amount of residual soils caused by the physical characteristics of cotton fiber.

  • PDF

Existing Forms of Heavy Metals in the Vicinity of a Smelter (제련소 주변토양 중금속 존재형태)

  • Woo, Sang-Duck;Kim, Geon-Ha;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.16-22
    • /
    • 2010
  • Heavy metals in soils exist in various forms dependent upon surrounding conditions. As the Janghang smelter area is of concern for its high elevated heavy metal concentrations, Korean government decided to remediate the area. Main objectives of this research were; to analyze heavy metal concentrations and their existing forms in the vicinity of the smelter; and to understand differences made by analysis techniques of heavy metals. Top soils of rice field, crop field, bare field, and forestry in the area were sampled and analyzed for their physicochemical characteristics. Concentrations of Cu, Cd, Pb, and As were analyzed with two pretreatment techniques adopted using 0.1 N HCl and aqua regia. To analyze existing forms of heavy metals, Tessier's schemes for sequential extraction technique were adopted. Exchangeable fraction and carbonate bound fraction of heavy metals may pose potential threat to environment and were in the order of Pb > As > Cu > Cd. If assessing mobile fraction of heavy metals by land uses, the order was forestry > bare land > crop field > rice field. When analyzed using Tessier's scheme, high ratio of residual fractions to total arsenic concentration should be considered for remediation design of the area.

The Laboratory Column Examination of Stabilization for Agricultural Land Contaminated by Heavy Metals using Sequential Stabilization (연속 안정화 공법을 이용한 중금속 오염 농경지 토양 안정화 처리를 위한 Column 실험 연구)

  • Park, Dong-Hyeok;Cho, Yun-Chul;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • In order to treat paddy soils contaminated by Pb, Cd, and As near the abandoned mine, $H_2PO_4$ was used for stabilization of Pb ($PO_4$/Pb mole ratio of 2/1). In addition, $CaCO_3$ and $FeSO_4$ were used as stabilizers for treating Cd and As (2% w/w), respectively. Leaching tests were conducted with artificial rain in the column to assess the heavy metal stabilization efficiency. The mass of heavy metals in the effluents passed through the columns were analyzed. The remaining heavy metals in the soils were also analyzed as Korean soil standard method, phytoavailability test and sequential extraction test. Lead in the effluent was not detected when $H_2PO_4$ was used as a stabilizer. This result suggests that $H_2PO_4$ is efficient for Pb stabilization. In addition results of sequential extraction scheme suggest that heavy metals are present as residual forms which is not easily extracted.

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.