• Title/Summary/Keyword: Residual pattern

Search Result 360, Processing Time 0.032 seconds

An Experimental Study on Multi-Fault Detection and Diagnosis Analysis of HVAC System (HVAC 시스템의 중복고장 검출을 위한 실험적 연구)

  • Cho Sung-Hwan;Hong Young-Ju;Yang Hooncheul;Ahn Byung-Cheon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.932-941
    • /
    • 2004
  • The objective of this study is to detect the multi-fault of HVAC system using a new pattern classification technique. To classify the effect of single-fault in determining the pattern, supply air temperature, OA-damper, supply fan, and air flowrate were chosen as experimental parameters. The combination of supply temperature, flow rate, supply fan and OA-damper were chosen as multi-fault conditions. Three kinds of patterns were introduced in the analysis of multi-fault problem. To solve multi-fault problem, the new pattern classification technique using residual ratio analysis was introduced to detect the multi-fault as well as single-fault. The residual ratio could diagnose single-fault or multi-fault into several patterns.

Study on the Quantitativity of Image Sticking in the Fringe-field Switching(FFS) Mode (Fringe-Field Switching (FFS) 모드에서 잔상 정량화에 관한 연구)

  • Seen, Seung-Min;Kim, Mn-Sook;Jung, Yeon-Hak;Kim, Hyang-Yul;Kim, Seo-Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.720-723
    • /
    • 2005
  • We studied the quantitativity of the image sticking which is occured by the resicual DC in the fringe-electric field switching (FFS) mode. Actually, in the FFS mode driven by the strong fringe electric field, the asymmetric residual DC was formed in the bottom substrate. It made the impurity ion stick to the alignment layer such as polyimde layer. Thus, the differnece of the luminance existes after the stress check pattern is applied to the panel so that we can see the image sticking. This image sticking decreases as the residual DC value between specific patterns decreases. Therefore, it is necessary to control the residual DC for the FFS mode with the high image quality. It is possible to eliminate the image stiking when the extra pixel voltage is applied through the circuit tunning for reducing the difference of residual DC accroding to the panel position.

Persistence and Degradation Pattern of Acequinocyl and Its Metabolite, Hydroxyl-Acequinocyl and Fenpyroximate in Butterburs (Petasites japonicus Max.)

  • Leesun Kim;Geun-Hyoung Choi;Hyun Ho Noh;Hee-Dong Lee;Hak-won Lee;Kee Sung Kyung;Jin-Ho Ro
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.93-103
    • /
    • 2023
  • Persistence and degradation patterns of acequinocyl and its metabolite, hydroxyl-acequinocyl (acequinocyl-OH) and fenpyroximate in butterburs (Petasites japonicus Max.) were investigated after pesticide application. Butterburs, one of the minor crops in South Korea, was planted in two plots (plot A for double and plot B for single application) in a greenhouse. Butterburs samples were also planted in a separate plot without pesticide treatment, as the control. A commercial pesticide containing acequinocyl and fenpyroximate was applied to the foliage of butterburs at hourly intervals after dilution. Recoveries of acequinocyl and acequinocyl-OH were 78.6-84.7% and 83.7-95.5%, respectively; the relative standard deviation of the two compounds were less than 5%. The method limit of quantification was 0.01 mg/kg. The total (Ʃ) acequinocyl residues in butterburs reduced by 96.0% at 14 days and 75.9% at 7 days, in plot A and B, respectively, after final pesticide applications. The biological half-life (DT50) of Ʃ acequinocyl and fenpyroximate, calculated using the dissipation rate, was 3.0 days and 4.0 days, respectively. These data were used to set up maximum residue and safe standard levels when the pesticides are applied to control pests during butterbur cultivation. Risk assessment results showed that the maximum % acceptable daily intake was 7.74% for Ʃ acequinocyl and 0.16% for Ʃ fenpyroximate. The theoretical maximum daily intake of Ʃ acequinocyl and fenpyroximate was 26.3% and 35.8%, respectively. In conclusion, the concentrations of Ʃ acequinocyl and fenpyroximate in butterburs pose no significant health risks to Koreans.

Evaluation of Residual Strength in Damaged Brittle Materials (취성재료의 손상후 잔류강도 평가)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

Chamber Monitoring with Residual Gas Analysis with Self-Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Lee, Hak-Seung;Park, Jeong-Geon;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.2-262.2
    • /
    • 2014
  • Plasma processing is an essential process for pattern etching and thin film deposition in nanoscale semiconductor device fabrication. It is necessary to maintain plasma chamber in steady-state in production. In this study, we determined plasma chamber state with residual gas analysis with self-plasma optical emission spectroscopy. Residual gas monitoring of fluorocarbon plasma etching chamber was performed with self-plasma optical emission spectroscopy (SPOES) and various chemical elements was identified with a SPOES system which is composed of small inductive coupled plasma chamber for glow discharge and optical emission spectroscopy monitoring system for measuring optical emission. This work demonstrates that chamber state can be monitored with SPOES and this technique can potentially help maintenance in production lines.

  • PDF

Distributions of Local Supply and Exhaust Effectiveness according to Room Airflow Patterns

  • Han, Hwa-Taik;Choi, Sun-Ho;Lee, Woo-Won
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.177-183
    • /
    • 2002
  • A pulsed tracer gas technique is applied to measure the distributions of local mean age and local mean residual-life-time of air in a half-scale experimental chamber, The airflow patterns in the chamber are visualized by a Helium bubble generator for three different exhaust locations. A supply slot is located at the top of a right wall, and an exhaust slot is at either bottom-left (Case 1), bottom-right (Case 2), or top-left (Case 3) location. Results show that the distributions of local mean age and local mean residual-life-time are different from each other, but both of them are closely related to the airflow pattern in the space. Included are discussions on explaining the variations of overall room ventilation effectiveness depending upon airflow rates for three different supply-exhaust configurations.

A Global Planarization of Interlayer Dielectric Using Chemical Mechanical Polishing for ULSI Chip Fabrication (화학기계적폴리싱(CMP)에 의한 층간절연막의 광역평탄화에 관한 연구)

  • Jeong, Hea-do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.46-56
    • /
    • 1996
  • Planarization technique is rapidly recognized as a critical step in chip fabrication due to the increase in wiring density and the trend towards a three dimensional structure. Global planarity requires the preferential removal of the projecting features. Also, the several materials i.e. Si semiconductor, oxide dielectric and sluminum interconnect on the chip, should be removed simultaneously in order to produce a planar surface. This research has investihgated the development of the chemical mechanical polishing(CMP) machine with uniform pressure and velocity mechanism, and the pad insensitive to pattern topography named hard grooved(HG) pad for global planarization. Finally, a successful result of uniformity less than 5% standard deviation in residual oxide film and planarity less than 15nm in residual step height of 4 inch device wafer, is achieved.

  • PDF

Fabrication of 70nm-sized metal patterns on flexible PET Film using nanoimprint lithography

  • Lee, Heon;Lee, Jong-Hwa
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1119-1120
    • /
    • 2007
  • Nano-sized metal patterns were successfully fabricated on flexible PET substrate using nanoimprint lithography. 70nm line and space PMMA resist pattern was formed on PET substrate without residual layer by 'artial filling effect' and 20nm thin Cr metal layer was deposited by e-beam evaporation. Then, PMMA resist was selectively removed by acetone and 70nm narrow Cr pattern was formed.

  • PDF

Fabrication of 70nm-sized metal patterns on flexible PET Film using nanoimprint lithography

  • Lee, Heon;Lee, Jong-Hwa
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.24-25
    • /
    • 2007
  • Nano-sized metal patterns were successfully fabricated on flexible PET substrate using nanoimprint lithography. 70nm line and space PMMA resist pattern was formed on PET substrate without residual layer by "partial filling effect' and 20nm thin Cr metal layer was deposited by e-beam evaporation. Then, PMMA resist was selectively removed by acetone and 70nm narrow Cr pattern was formed.

  • PDF

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.