• Title/Summary/Keyword: Residual chlorine concentration

Search Result 98, Processing Time 0.021 seconds

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

The Determination of TRC using an Electrochemical Method (II: Pt electrode) (전기화학적 방법의 TRC(Total residual chlorine) 측정 연구(II: Pt전극 이용))

  • Lee, JunCheol;Pak, DaeWon
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.304-310
    • /
    • 2014
  • The conventional methods for total residual chlorine such as iodometry and DPD colorimetric can cause secondary pollution due to additional agents, also have a wide error range. As for alternative, electrochemical method can measure TRC(Total residual chlorine), and is not required as additional agents, also very suitable for using the fields of ballast water because test time is relatively fast. Therefore, this study was investigated for changing charge by agitation, salt concentration, and temperature change. Charge showed differences based on changes of reduction peak with or without agitation. In contrast, TRC and charge were well correlated in constant agitation speed. As TRC and charge were analyzed with high correlations in constant salinity and temperature of ocean, thereby conductivity was firstly measured, and charge had high correlation for TRC in spite of changing salinity and temperature Pt electrode revealed high reliability ($r^2=0.960$) because it was rarely effected by TRC, On the other hand, Au electrode appeared inadequate ($r^2=0.767$) to use sensor in less than 1.0 ppm of TRC. For high accuracy and detection of TRC, Pt and Au electrodes for test time were, respectively, 14 and 22 seconds. As a result, Pt electrode was more valuable than Au electrode in terms of response time.

Ammonia-nitrogen Removal in Sea Water by Using Electrolysis (전기분해법에 의한 해수내의 암모니아성 질소 제거)

  • 이병헌;이제근;길대수;곽순열
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.435-438
    • /
    • 1997
  • Biological ammonia removal system have been used conventionally for the seawater fish farming. But this process requires long hydraulic retention times and large area. Also it has a trouble of NO3-N accumulation in the system. Therefore, this study was conducted to find out the feasibility of effective nitrogen removal efficiency in the sea water fish farming system by electolysis. As the result, electrolysis system showed a good ammonia and nitrate nitrogen removal and E. coli sterilization efficiencies. Because of the high salinities in the seawater for electron transfer, electrolysis is an effictive water treatment process for seawater fish farming. The relation among ammonia removal efficiency, hydraulic retention time (HRT) and electric wattage (watt) with 10 mm electrod distance isas follow ; log [$NH_4^$+-N(%)]=0.431log(HRT(sec)$\times$Watt)+0.88(r=0.950) And the relation between ammonia removal efficiency and residual chlorine concentration in the seawater is as follow; $$NH_4^+-N(%)=48\cdotlog[Residual\;chlorine(mg/\ell)+28(r=0.892)$$

  • PDF

Assessment of temperature-dependent water quality reaction coefficients and monthly variability of residual chlorine in water distribution networks (수온 변화에 따른 상수관망 내 수질반응계수 추정 및 월별 잔류염소농도 분포 변화 분석)

  • Jeong, Gimoon;Choi, Taeho;Kang, Doosun;Lee, Juwon;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.705-720
    • /
    • 2023
  • In South Korea, ongoing incidents related to drinking water quality have eroded consumer trust. Specifically, beyond quality incidents, there have been complaints about taste, odor, and other issues stemming from the presence of chlorine. To address this, water service operators are employing various management strategies from both temporal (scheduling) and spatial (rechlorination) perspectives to ensure uniform and safe distribution of chlorine residuals. In this study, we focus on the optimal monthly management of chlorine residuals, based on water distribution network analysis. Water quality reaction coefficients, including bulk fluid and wall reaction coefficients, were estimated through lab-scale tests and EPANET water quality simulations, respectively, accounting for temperature variations in a large-scale water distribution network. Utilizing these estimated coefficients, we examined the monthly variations in chlorine residual distribution under different chlorine injection conditions. The results indicate that the efficient concentration for chlorine injection, which satisfies the residual chlorine limit range, varies with temperature changes. Consequently, it is imperative to establish a specific and quantitative chlorine injection plan that considers the accurate spatial distribution of monthly chlorine residuals.

Changes in Physicochemical and Sensory Properties of Fruits as Affected by Chlorine Sterilization (과일류의 염소 소독 방법에 따른 이화학적 및 관능적 품질 특성 변화)

  • Park, Jong-Sook;Nam, Eun-Sook;Park, Shin-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.4
    • /
    • pp.499-509
    • /
    • 2008
  • The purpose of this study was to investigate the changes in physicochemical and sensory properties of raw fruits during washing and chlorine treatments. Strawberry and banana were pre-prepared at different concentration of chlorinated water(0 ppm, 50 ppm and 100 ppm), immersion time(3 min and 5 min), and number of post-rinsing(1 time, 2 times and 3 times). The physicochemical properties such as pH, sugar contents, residual chlorine contents, color values and hardness of the fruits were analyzed, and the sensory quality were evaluated throughout the sterilization treatment process. After washing strawberry with 100 ppm chlorinated water and 3 times of post-rinsing, pH and residual chlorine contents were showed a little difference, while sugar contents, hardness, and color values(L, a and b) were reduced. In case of banana, pH, sugar contents and residual chlorine contents were not affected, and hardness and L color value were reduced. However, a and b color values of banana were gradually increased as the development of brown discoloration. Sensory properties of the samples were affected by the chlorine sterilization treatment. In overall acceptance, strawberry and banana treated with 100 ppm chlorinated water showed the lowest scores among treatments. Therefore it could be suggested that the application of 50 ppm chlorinated water for $3{\sim}5$ minutes with over 3 times of post-rinsing was the effective pre-preparation method without affecting the quality of the fruits.

Rechlorination for residual chlorine concentration equalization in distribution system (급배수시스템에서 잔류염소 농도 균등화를 위한 재염소 처리)

  • Kim, Jinkeun;Han, Ji-An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.91-101
    • /
    • 2014
  • Three water treatment plants(WTPs) in Jeju island whose source water have different characteristics from those of the mainland of Korea were investigated. Coefficients of bulk water decay($k_b$) of free chlorine at $5^{\circ}C$ for ES, GJ, NW WTPs were $-0.003hr^{-1}$, $-0.002hr^{-1}$ and $-0.001hr^{-1}$ respectively based on bottle tests. To simulate the free chlorine variations in the distribution system using EPANET, ES WTP was chosen. Free chlorine concentrations of several sites were less than the drinking water quality standards(i.e., 0.1 mg/L); E5(0.03 mg/L), E6(0.02 mg/L), W21(0.02 mg/L) and W25(0.03 mg/L). To maintain more than 0.1 mg/L of free chlorine in the distribution system, at least 1.9 mg/L of chlorine was needed at the WTP, which suggested rechlorination was needed to supply palatable tap water to customers. Two sites, one that diverged into E5 and E6 in the east-line and another located before E21 in the west-line were selected for the appropriate rechlorination locations. The recommended rechlorination dosages were 0.42 mg/L for the east and 0.27 mg/L for the west. The simulated results indicated that the free chlorine could be reduced to 0.4 mg/L at the WTP with rechlorination, and taps with excessive free chlorine could be more stabilized(i.e., 0.1~0.4 mg/L).

Behaviors of LAS in Reactions with Free Chlorine (鹽素와 反應에서 LAS의 擧動에 관한 연구)

  • Kim, Hea-tae;Lee, Hwan;Lee, Yoon-jin;Nam, Sang-ho
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.106-114
    • /
    • 1997
  • When surfactants meet chlorine bleaches not only in the washing drums but also through the whole path from the stream to the river, it is not difficult to expect that they produce the harmful substances like DBPs. Furthermore considering wastewater that is contaminated by surfactants is used to discharge into drinking water sources via sewer system, it also can be imagined that residual surfactants would contribute to the some extent of DBPs' formation during chlorine disinfection in water treatment plants. Although the main behavior observed was the formation of chloroform during the reaction of LAS with free chlorine, the other manifest behaviors like the trends of pH, MBAS, free chlorine, the mole concentration of benzene ring and etc. were also investigated.

  • PDF

Variation of Disinfection-by-Prodcut in Distribution System and Evaluation of Correlation between Disinfection-by-Product and Physico-Chemical Parameters (관망에서의 소독부산물 변화와 관련 영향인자들의 상관관계 분석)

  • Song, Young Il;Ann, Suna;Ann, Seoungyun;Seo, Daeguen;Cho, Hyukjin;Lee, Jaesung;Choi, Ilwhan;Shin, Changsoo;Lee, Hee Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.63-70
    • /
    • 2016
  • The distributed systems managed by K-water were surveyed to study the characteristic of disinfection-by-product (Trihalomethans & Haloacetic acids) formation and the correlations between the concentrations of disinfection-by-product and physico-chemical parameters. Five distribted system were selected according to their water ages and the degree of deterioration of their pipelines. Total seven items including Trihalomethans (THMs), Haloacetic acids (HAAs), BDOC, DOC, pH, chlorine residual, and temperature were analysed in monthly basis. The concentration of organic matter were increased according to water age and pipeline deterioration in this study. The coefficient of determination between the decline of residual chlorine and the increase of water age was revealed as high. Also, the coefficient of determination between the decline rate of residual chlorine and the increase of the Trihalomethans concentration were studied as high. Furthermore the longer water age is the bigger the effect on Trihalomethans formation and temperature. However, the coefficient of determination between the concentraion of Haloacetic acid and water age, residual chlorine, and temperature were revealed as low in this study.

A Study on Water Quality Management Methods of Waterscape Facilities in Accordance Legislation of Water Quality Criteria (수질기준 법제화에 따른 물놀이형 수경시설의 수질관리방안 연구)

  • Na, Kyung-Ho;Yong, Jeong-Ju;Kim, Ji-Soo;Byeon, Ju-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.487-493
    • /
    • 2017
  • This study was conducted to propose measures of water quality management as the water criteria for waterscape facilities which have been highlighted as alternatives to wading pools in summer season was legislated. The number of public waterscape facilities has reached 290 sites in Gyeounggi province and 971 sites in South Korea in 2017. The water tank capacity of 80.3 % public waterscape facilities was less than $100m^3$. Facilities with disinfection system were only 6.5 % and facilities with filtration function were also very low at 6.9 %. Most of the waterscape facilities, about 93%, are expected to be vulnerable to complying with revised water quality criteria because they have to be disinfected by handling. Chlorine disinfectants, which are more persistent than ozone or ultraviolet sterilization methods, are more preferred. However, care should be taken when adding disinfectans because hypochlorous acid, which is an effective component of chlorine disinfectant, remains after the disinfection, but it is easily decomposed with time. For this study, ${\bigcirc}{\bigcirc}$ park floor fountain with a capacity of $63m^3$ was selected and the amount of free residual chlorine concentration was measured by injecting a certain amount of chlorine bleach. As a result, it took 5 hours to decrease from the water quality standard of 4 mg/L to 0.04 mg/L. If the waterscape facility is operated for 7 to 8 hours, the chlorine bleach should be re-injected after 5 hours. In addition, the problem of pH increase due to the input of chlorine disinfectant is expected, and the neutralization method using vinegar was proposed.

Real-Time Detection of Residual Free Chlorine and pH in Water Using a Microchannel Device

  • Kim, Sam-Hwan;Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.368-374
    • /
    • 2011
  • A microfluidic device for real-time monitoring of residual free chlorine and pH in water based on optical absorption is proposed. The device consists of a serpentine micromixer for mixing samples with a reagent, and a photodiode and light emitting diode(LED) for the detection of light absorbance at specific wavelengths, determined for specific reagent combinations. Spectral analyses of the samples mixed with N, N'-diethyl-p-phenylenediamine(DPD) reagent for chlorine determination and bromothymol blue(BTB) for pH measurement are performed, and the wavelengths providing the most useful linear changes in absorbance with chlorine concentration and pH are determined and used to select the combination of LED and photodiode wavelengths for each analyte. In tests using standard solutions, the device is shown to give highly reproducible results, demonstrating the feasibility of the device for the inexpensive and continuous monitoring of water quality parameters with very low reagent consumption.