• 제목/요약/키워드: Residual capacity

검색결과 477건 처리시간 0.031초

시흥 Cu-Pb-Zn 광산 주변에서의 중금속원소들의 분산 및 존재형태와 흡착처리 (Dispersion, Speciation and Adsorption Treatment of Heavy Metals in the Vicinity of the Shi-Heung Cu-Pb-Zn Mine)

  • 황호송;전효택
    • 자원환경지질
    • /
    • 제28권5호
    • /
    • pp.455-467
    • /
    • 1995
  • In order to investigate the dispersion patterns and speciations of Cu, Pb, Zn and Cd in soils, stream sediments and stream waters, geochemical studies of soil, stream sediment and stream water samples collected in the vicinity of the Shi-Heung Cu-Pb-Zn mine was carried out Cation exchange capacity measurement, size analysis, X-ray diffraction analysis and batch test were performed to select applicable soil for adsorption treatment The average content of Cu, Pb, Zn and Cd in soils collected from tailings and ore dressing plant is 1084 ppm, 2292 ppm, 3512 ppm and 29.2 ppm, respectively, and therefore, tailings and ore dressing plant site may be the major contamination sources in this study area. The mean content of Cu, Pb, Zn and Cd in stream sediments is extremely high up to 794 ppm, 1633 ppm, 2946 ppm and 25.2 ppm, respectively. Tailing particles and heavy metal ions are dispersed along the tributary system. Results from the sequential extraction analysis indicate; (1) most of Cu is bound to organic matters and sulphides, (2) fraction of Pb is mainly bound to Fe and Mn oxides. Most of Zn is largely bound to Fe and Mn oxides and residual fraction. Ion exchangeable fraction of Cd is relatively higher than those of Cu, Pb and Zn. Batch test on soils collected from the kaolinite and/or pyrophyllite mines and from the control areas was carried out to select an applicable soil samples for adsorption treatment The sample, S10, collected from the control area 2 (clay content 33.2%) shows the highest $K_d$ (distribution coefficient). Organic content in soils and several clay minerals shows relatively good correlation with $K_d$. It means that applicable soils for adsorption treatment of heavy metals show high organic and clay content.

  • PDF

개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계 (Fuzzy Optimum Design of Plane Steel Frames Using Refined Plastic Hinge Analysis and a Genetic Algorithm)

  • 이말숙;윤영묵;손수덕
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.147-160
    • /
    • 2006
  • 본 논문에서는 개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계 방법을 제시하였다. 개선소성힌지해석에서는 강골조 구조물의 기하학적 비선형성을 고려하기 위해 보-기둥 요소의 안정함수를 사용하였으며, 재료적 비선형을 고려하기 위해 잔류응력, 소성힌지, 그리고 기하학적 불완전성 등에 의한 점진적인 강성감소모델을 사용하였다. 유전자 알고리듬에서는 토너먼트 선택방법과 마이크로 유전자 알고리즘을 사용하였다. 목적함수로는 구조물의 총중량을 사용하였으며, 제약조건으로는 하중-저항능력, 사용성, 연성도, 그리고 시공성에 관한 기준을 고려하였다. 퍼지최적설계에서는 명확한 목적함수와 퍼지제약을 가지는 경우에 한하여 허용 오차는 제한값의 5%로 선택하고 비소속함수와 레벨컷 방법을 이용하여 0에서 1까지 0.2간격으로 나누어 최적화하였다. 여러 평면 강골조 구조물의 최적설계를 수행하여 일반GA최적설계와 퍼지GA최적설계의 최적값을 비교하였다.

졸-겔공정/광증착법을 이용한 Ag-Doped TiO2 합성 및 광촉매 특성 (Photocatalytic Properties of the Ag-Doped TiO2 Prepared by Sol-Gel Process/Photodeposition)

  • 김병민;김정식
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.73-78
    • /
    • 2016
  • $TiO_2$ nanoparticles were synthesized by a sol-gel process using titanium tetra isopropoxide as a precursor at room temperature. Ag-doped $TiO_2$ nanoparticles were prepared by photoreduction of $AgNO_3$ on $TiO_2$ under UV light irradiation and calcinated at $400^{\circ}C$. Ag-doped $TiO_2$ nanoparticles were characterized for their structural and morphological properties by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photocatalytic properties of the $TiO_2$ and Ag-doped $TiO_2$ nanoparticles were evaluated according to the degree of photocatalytic degradation of gaseous benzene under UV and visible light irradiation. To estimate the rate of photolysis under UV (${\lambda}=365nm$) and visible (${\lambda}{\geq}410nm$) light, the residual concentration of benzene was monitored by gas chromatography (GC). Both undoped/doped nanoparticles showed about 80 % of photolysis of benzene under UV light. However, under visible light irradiation Ag-doped $TiO_2$ nanoparticles exhibited a photocatalytic reaction toward the photodegradation of benzene more efficient than that of bare $TiO_2$. The enhanced photocatalytic reaction of Ag-doped $TiO_2$ nanoparticles is attributed to the decrease in the activation energy and to the existence of Ag in the $TiO_2$ host lattice, which increases the absorption capacity in the visible region by acting as an electron trapper and promotes charge separation of the photoinduced electrons ($e^-$) and holes ($h^+$). The use of Ag-doped $TiO_2$ nanoparticles preserved the option of an environmentally benign photocatalytic reaction using visible light; These particles can be applicable to environmental cleaning applications.

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

선탄경석(選炭硬石)과 광산화물(鑛酸化物)로 제조(製造)한 담체(擔體)의 중금속(重金屬) 불용화(不溶化) 특성연구(特性硏究) (A study of Immobilizing Heavy metals by pellets manufactured from Coal tailings and Iron oxide)

  • 이계승;송영준
    • 자원리싸이클링
    • /
    • 제21권1호
    • /
    • pp.75-81
    • /
    • 2012
  • 선탄경석을 환경개선물질로 순환자원화하기 위해 철산화물과 혼합하여 중금속 불용화제를 제조하고 이의 적정제조 조건과 중금속에 대한 불용화 성능을 평가하였다 선탄경석을 분쇄한 후 철산화물의 분말을 혼합하여 구형의 펠릿을 제조하고 이를 가열하여 중금속 불용화제를 제조하였다. 온도별로 가열한 결과, $1100^{\circ}C$부터 선탄경석에 함유된 탄질분에 의해 영가철이 생성되었다. 제조된 불용화제는 구형의 다공체로서 공극률은 34.63%, 겉보기 밀도는 1.31 g/mL, 공극의 평균크기는 9.82 ${\mu}m$로 측정되었다. 불용화제를 비소(V), 구리(II), 크롬(VI), 카드뮴(II)이 함유된 각각의 중금속 용액과 반응시킨 결과, 영가철이 생성된 $1100^{\circ}C$에서 제조된 펠릿이 중금속 불용화도가 높고 pH를 더 높이는 것으로 나타났다. 중금속농도 10 ppm의 용액을 99.9%이상 불용화하기까지 비소의 경우 1시간, 크롬의 경우 2시간, 구리의 경우 4시간이 필요하였다. 그러나 카드뮴의 경우 불용화도가 낮게 나타났고 중금속농도가 높을수록 불용화도가 더 낮아지는 것으로 나타났다.

Predictors of Acute Postoperative Urinary Retention after Transvaginal Uterosacral Suspension Surgery

  • Son, Eun-Joo;Joo, Eunwook;Hwang, Woo Yeon;Kang, Mi Hyun;Choi, Hyun Jin;Yoo, Eun-Hee
    • Journal of Menopausal Medicine
    • /
    • 제24권3호
    • /
    • pp.163-168
    • /
    • 2018
  • Objectives: To investigate the rate of postoperative urinary retention (POUR) and identify the risk factors for this complication in women who underwent transvaginal uterosacral suspension surgery. Methods: A retrospective chart review was conducted for 75 women who underwent transvaginal uterosacral suspension surgery with vaginal hysterectomy, repair of cystocele, and levator myorrhaphy with/without transobturator anti-incontinence surgery. POUR was defined as a need for continuous intermittent catheterization on the third day subsequent to removal of the urethral indwelling catheter. Results: Acute POUR was reported in 18 women (24.0%). Thirty-six of the 75 patients (48.0%) had undergone anti-incontinence surgery. Crude analysis revealed significant association between the following variables and the risk of POUR: hypertension, the lower average flow rate in the pressure-flow study (PFS), greater post-void residual (PVR) urine volume in PFS, and PVR >30% of the total bladder capacity (TBC) in PFS. In the logistic regression analysis, PVR >30% of the TBC in PFS was identified as the only significant predictor of POUR (odds ratio, 15.4; 95% confidence interval, 2.5-90.9; P = 0.003). Conclusions: The PVR >30% of the TBC in PFS was identified as the only predictive factor of acute POUR in women who underwent transvaginal uterosacral suspension surgery.

100L-700MPa급 초고압 용기 설계 기술 개발 (Development of Design Method on High Pressure Vessel of 100L-700MPa Grade)

  • 박보규;이호준;이인준;박시우;조규상
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.67-73
    • /
    • 2019
  • An ultra-high pressure treatment device is a device used for increasing the shelf life of food by sterilizing it by applying hydrostatic pressure to solid or liquid food. The ultrahigh pressure treatment system developed in this study is a pressure vessel with a processing capacity of 100 L and a maximum pressure of 700 MPa. Pressure vessels for ultrahigh-pressure processing equipment are manufactured using wire-winding techniques. The design formula for making ultra-high pressure vessels with wire windings is given in ASME Section VIII - Division 3. In this study, the ratio of the cylinder to the winding area that can be applied in a wire-winding application was analyzed using a finite element analysis. Furthermore, the relationship between the variation of the residual stress in the vessel and the ratio of the winding area due to the variation of the winding tension was analyzed, and a design guide applicable to the actual product design was developed. Finally, the design equation was modified by presenting the coefficients to correct the difference between the finite element analysis and the design equation.

중국의 지속적 경제발전에 관한 연구: 한국의 경제발전 경험을 바탕으로 (A Study on the Sustainable Development of China's Economy: based on the Experiences of South Korea's Economic Development)

  • 주성환;권선희
    • 국제지역연구
    • /
    • 제15권3호
    • /
    • pp.325-348
    • /
    • 2011
  • 본 연구는 중국이 지속적 경제발전을 이루기 위한 발전방향이 무엇인가를 경제발전이론 및 한국의 경제발전경험과 비교하여 분석하였다. 경제발전이론에 의하면 한 국가의 경제발전 자본과 노동의 생산성, 그리고 잔차(residual) 등에 의해 결정된다. 따라서 중국이 지속적 경제발전을 위해서는 교육의 확대를 통해 인적자본을 육성하여야 하는데, 교육의 확대는 정치의 민주화를 초래한다. 또한 경제발전의 큰 부분을 차지하는 쏘로우 잔차는 그 사회의 기술수준에 의해 결정되는데, 기술수준의 진보는 민주화의 확산을 불러오게 된다. 한편 중국의 지속적 경제발전 방향을 한국의 경제발전경험에서 찾아보면, 한국은 정부의 시장개입으로 1997년 말 IMF 경제위기에 빠지게 되었는데 정치적 민주화와 함께 자유시장경제의 운영으로 지속적인 경제발전을 이어가고 있다. 한국은 정부가 정부개입에 따른 시장실패를 인정하고 자유시장과 민주화를 통해 문제를 해결한 드문 사례 중 하나이다. 결과적으로 중국이 지속적 경제발전을 이루기 위해서 시장경제의 확대와 민주주의제도의 발전이 이루어져야 할 것이다.

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings

  • Zheng, Yue;Dong, You;Chen, Bo;Anwar, Ghazanfar Ali
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.127-139
    • /
    • 2019
  • Residual drifts after an earthquake can incur huge repair costs and might need to replace the infrastructure because of its non-reparability. Proper functioning of bridges is also essential in the aftermath of an earthquake. In order to mitigate pounding and unseating damage of bridges subjected to earthquakes, a self-adaptive Ni-Ti shape memory alloy (SMA)-cable-based frictional sliding bearing (SMAFSB) is proposed considering self-adaptive centering, high energy dissipation, better fatigue, and corrosion resistance from SMA-cable component. The developed novel bearing is associated with the properties of modularity, replaceability, and earthquake isolation capacity, which could reduce the repair time and increase the resilience of highway bridges. To evaluate the super-elasticity of the SMA-cable, pseudo-static tests and numerical simulation on the SMA-cable specimens with a diameter of 7 mm are conducted and one dimensional (1D) constitutive hysteretic model of the SMAFSB is developed considering the effects of gap, self-centering, and high energy dissipation. Two types of the SMAFSB (i.e., movable and fixed SMAFSBs) are applied to a two-span continuous reinforced concrete (RC) bridge. The seismic vulnerabilities of the RC bridge, utilizing movable SMAFSB with the constant gap size of 60 mm and the fixed SMAFSBs with different gap sizes (e.g., 0, 30, and 60 mm), are assessed at component and system levels, respectively. It can be observed that the fixed SMAFSB with a gap of 30 mm gained the most retrofitting effect among the three cases.