• Title/Summary/Keyword: Residual Test

Search Result 1,822, Processing Time 0.023 seconds

Design Equation for Predicting the Residual Strength of Damaged Tubulars Under Combined Axial Compression and Hydrostatic Pressure (축 압축력과 수압하의 손상된 원통의 잔류 강도 추정을 위한 설계식)

  • Sang-Rai,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.44-56
    • /
    • 1989
  • Recently the residual strength of damaged tubulars under axial compression has extensively been investigated. However, in spite of the possibility of damage onto underwater members of offshore structures as results of collisions, dropped objects and other accidental impacts occurring in service or during fabrication or installation, no research works on the structural behaviour of damaged tubulars under combined loadings including hydrostatic pressure have been reported in the literature. In this paper, a numerical method has been proposed to estimate the residual strength of damaged tubulars under combined loadings, and then the proposed method has been substantiated with corresponding test data. A simple design equation has been derived based upon the results of the parametric study using the proposed method. The accuracy of the predictions using the derived equation is found to be a 10.1% COV(Coefficient of Variation) together with an 1. 037 mean comparing with the test data.

  • PDF

A Study on the Evaluation of Residual Strength of Double Concrete Filled Tube Column by Unstressed test (비재하 가열실험을 통한 이중강관 CFT기둥의 잔존강도 평가연구)

  • Kim, Sun-Hee;Won, Yong-An;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • The concrete-filled tubular square column is superior to steel frame column in terms of fire resistance because of the thermal storage provided by the concrete. Studies have been conducted on CFT column reinforcement with steel bars or with the use of an internal tube to improve its structural load capacity and fire resistance. In fact, reinforced CFT columns have been increasingly used to deal with high axial force. The functional deterioration of columns due to fire damage needs to be measured precisely. In this study, the temperature distribution inside the columns in case of a fire was evaluated and the degree of deterioration in the load capacity of the concrete and reinforcing members associated with temperature distribution was identified in order to evaluate the overall residual strength of the columns.

The Welding Residual Stress and Fracture Toughness Characteristics of HT50 Laser Welded Joint (고장력강(HT50) 레이저용접부의 용접잔류응력 및 파괴인성 특성)

  • Ro, Chan-Seung;Bang, Hee-Seon;Bang, Han-Sur;Oh, Chong-In
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.71-76
    • /
    • 2007
  • Recently, many industries have been employing the application of laser beam welding, due to the resulting high welding quality, such as smaller width of melting and heat affective zone, smaller welding deformation, and fine grains of weldment, compared to arc welding. However, in order to appropriately utilize this welding process with steel structure, the characteristics of welding residual stresses and fracture toughness in welded joints are to be investigated for reliability. Therefore, in this study, the mechanical properties of weldments by arc and laser welding are investigated using FEM to confirm the weldability of laser welding to the general structural steel (HT50). The Charpy impact test and 3-points bending CTOD test are carried out in the range of temperatures between $-60^{\circ}C\;and\;20^{\circ}C$, in order to understand the effect on the fracture toughness of weldments. From the research results, it has been found that the maximum residual stress appears at the center of plate thickness, and that the fracture toughness is influenced by strength mis-match.

Benefits of mineralized bone cortical allograft for immediate implant placement in extraction sites: an in vivo study in dogs

  • Orti, Valerie;Bousquet, Philippe;Tramini, Paul;Gaitan, Cesar;Mertens, Brenda;Cuisinier, Frederic
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.5
    • /
    • pp.291-302
    • /
    • 2016
  • Purpose: The aim of the present study was to evaluate the effectiveness of using a mineralized bone cortical allograft (MBCA), with or without a resorbable collagenous membrane derived from bovine pericardium, on alveolar bone remodeling after immediate implant placement in a dog model. Methods: Six mongrel dogs were included. The test and control sites were randomly selected. Four biradicular premolars were extracted from the mandible. In control sites, implants without an allograft or membrane were placed immediately in the fresh extraction sockets. In the test sites, an MBCA was placed to fill the gap between the bone socket wall and implant, with or without a resorbable collagenous membrane. Specimens were collected after 1 and 3 months. The amount of residual particles and new bone quality were evaluated by histomorphometry. Results: Few residual graft particles were observed to be closely embedded in the new bone without any contact with the implant surface. The allograft combined with a resorbable collagen membrane limited the resorption of the buccal wall in height and width. The histological quality of the new bone was equivalent to that of the original bone. The MBCA improved the quality of new bone formation, with few residual particles observed at 3 months. Conclusions: The preliminary results of this animal study indicate a real benefit in obtaining new bone as well as in enhancing osseointegration due to the high resorbability of cortical allograft particles, in comparison to the results of xenografts or other biomaterials (mineralized or demineralized cancellous allografts) that have been presented in the literature. Furthermore, the use of an MBCA combined with a collagen membrane in extraction and immediate implant placement limited the extent of post-extraction resorption.

Two-short implant supported single molar restoration in atrophic posterior maxilla : a clinical study (위축된 상악구치부에서 두 개의 짧은 임플란트 지지형 단일치관의 임상연구)

  • Song, Ho-Yong;Heo, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.628-643
    • /
    • 2015
  • Purpose: The aim of this retrospective study was to compare marginal bone loss and survival rates of double short implants(multiple implant) which had been installed and restored in severely atrophic maxillary molar site without a grafting procedure. Material and Method: The subjects were patients (90 patients, 180 implants) who had been installed double short implants in severely atrophic maxillary single molar site without bone augmentation procedure from 2006 to 2014 in dental clinic in Chuncheon city. Following data were collected from dental records and radiographic panoramic views: patient's age, gender, smoking status, implant site, timing of implant installation, residual ridge height. The correlation between those factors and survival rate and marginal bone loss were analyzed. Statistical analysis was performed using Chi-square test, Student's t- test and ANOVA. Result: Eleven implants in 6 patients failed and the cumulative survival rate was 93.9%. No significant differences were found in relation to the following factors: patient's age, gender, implant site, timing of implant installation (P> .05). There were significant differences in smoking status and residual ridge height(P< .05). The average follow-up time was $45{\pm}14.7months$. The mean marginal bone loss of survived 169 implants was $0.08{\pm}0.59mm$. Conclusion: Despite the short term outcomes, the survival rate of double short implants was comparable to normal length implants. This study demonstrated that placement of double short implants without the use of bone grafting procedure for severely atrophic posterior maxilla is a simple and predictable treatment procedure.

Residual Strain Characteristics of Nickel-coated FBG Sensors (니켈이 코팅된 FBG 센서의 잔류 변형률 특성)

  • Cho, Won-Jae;Hwang, A-Reum;Kim, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.613-620
    • /
    • 2017
  • A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately $43{\mu}m$ of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

Positional uncertainties of cervical and upper thoracic spine in stereotactic body radiotherapy with thermoplastic mask immobilization

  • Jeon, Seung Hyuck;Kim, Jin Ho
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.122-128
    • /
    • 2018
  • Purpose: To investigate positional uncertainty and its correlation with clinical parameters in spine stereotactic body radiotherapy (SBRT) using thermoplastic mask (TM) immobilization. Materials and Methods: A total of 21 patients who underwent spine SBRT for cervical or upper thoracic spinal lesions were retrospectively analyzed. All patients were treated with image guidance using cone beam computed tomography (CBCT) and 4 degrees-of-freedom (DoF) positional correction. Initial, pre-treatment, and post-treatment CBCTs were analyzed. Setup error (SE), pre-treatment residual error (preRE), post-treatment residual error (postRE), intrafraction motion before treatment (IM1), and intrafraction motion during treatment (IM2) were determined from 6 DoF manual rigid registration. Results: The three-dimensional (3D) magnitudes of translational uncertainties (mean ${\pm}$ 2 standard deviation) were $3.7{\pm}3.5mm$ (SE), $0.9{\pm}0.9mm$ (preRE), $1.2{\pm}1.5mm$ (postRE), $1.4{\pm}2.4mm$ (IM1), and $0.9{\pm}1.0mm$ (IM2), and average angular differences were $1.1^{\circ}{\pm}1.2^{\circ}$ (SE), $0.9^{\circ}{\pm}1.1^{\circ}$ (preRE), $0.9^{\circ}{\pm}1.1^{\circ}$ (postRE), $0.6^{\circ}{\pm}0.9^{\circ}$ (IM1), and $0.5^{\circ}{\pm}0.5^{\circ}$ (IM2). The 3D magnitude of SE, preRE, postRE, IM1, and IM2 exceeded 2 mm in 18, 0, 3, 3, and 1 patients, respectively. No association were found between all positional uncertainties and body mass index, pain score, and treatment location (p > 0.05, Mann-Whitney test). There was a tendency of intrafraction motion to increase with overall treatment time; however, the correlation was not statistically significant (p > 0.05, Spearman rank correlation test). Conclusion: In spine SBRT using TM immobilization, CBCT and 4 DoF alignment correction, a minimum residual translational uncertainty was 2 mm. Shortening overall treatment time and 6 DoF positional correction may further reduce positional uncertainties.

Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation

  • Huh, Jung-Bo;Lee, Jeong-Yeol;Jeon, Young-Chan;Shin, Sang-Wan;Ahn, Jin-Soo;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.84-91
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. MATERIALS AND METHODS. Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (${\alpha}$=0.05). RESULTS. Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). CONCLUSION. The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.

Study on Crashworthiness of Icebreaker Steel: Part II Ship Side Structural Behavior Due to Impact Bending (쇄빙선의 내충격 특성에 관한 실험적 연구: 제2부 선체 구조의 충격 굽힘 특성)

  • Noh, Myung-Hyun;Lee, Jae-Yik;Han, Donghwa;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.277-286
    • /
    • 2016
  • The first part of this study found the tendencies of the mechanical properties of two arctic structural steels (EH32 and FH32). In the second part, the crashworthiness of stiffened panels scaled down from the side frame structure of a Korean research icebreaker was determined. A procedure for designing the shapes and sizes of the stiffened panels, mass and shape of a drop striker, and a large temperature chamber, and then manufacturing these, is introduced in detail. From impact bending tests for the stiffened panels, the residual permanent deformations and deformation histories over time were captured using manual measurement and video image analyses. Numerical simulations of the impact bending tests were carried out for three different finite element models, which were mainly composed of shell elements, solid elements, and solid elements, with welding beads. It was proven from a comparison of the test results and numerical simulation results that the solid element model with the welding bead consideration approached the test results in terms of the residual deformations as long as the strain rate effect was taken into account.

Shear behavior of foam-conditioned gravelly sands: Insights from pressurized vane shear tests

  • Shuying Wang;Jiazheng Zhong;Qiujing Pan;Tongming Qu;Fanlin Ling
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.637-648
    • /
    • 2023
  • When an earth pressure balance (EPB) shield machine bores a tunnel in gravelly sand stratum, the excavated natural soil is normally transformed using foam and water to reduce cutter wear and the risk of direct muck squeezing out of the screw conveyor (i.e., muck spewing). Understanding the undrained shear behavior of conditioned soils under pressure is a potential perspective for optimizing the earth pressure balance shield tunnelling strategies. Owing to the unconventional properties of conditioned soil, a pressurized vane shear apparatus was utilized to investigate the undrained shear behavior of foam-conditioned gravelly sands under normal pressure. The results showed that the shear stress-displacement curves exhibited strain-softening behavior only when the initial void ratio (e0) of the foam-conditioned sand was less than the maximum void ratio (emax) of the unconditioned sand. The peak and residual strength increased with an increase in normal pressure and a decrease in foam injection ratio. A unique relation between the void ratio and the shear strength in the residual stage was observed in the e-ln(τ) space. When e0 was greater than emax, the fluid-like specimens had quite low strengths. Besides, the stick-slip behavior, characterized by the variation coefficient of measured shear stress in the residual stage, was more evident under lower pressure but it appeared to be independent of the foam injection. A comparison between the results of pressurized vane shear tests and those of slump tests indicated that the slump test has its limitations to characterize the chamber muck fluidity and build the optimal conditioning parameters.