• Title/Summary/Keyword: Residual Test

Search Result 1,825, Processing Time 0.027 seconds

Friction Characteristics on Interface Between Reinforcement and Sand by Direct Shear Test Methods (전단시험방법에 따른 토목섬유/모래 접촉면에서의 마찰특성)

  • Ju, Jae-Woo;Park, Jong-Beom;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • The most important part in the earth reinforcement is the interface between soil and the reinforcement. Shear strength and shear behavior in this interface make a great role relating to the reinforcement effect. This paper presents 2 kinds of direct shear test methods. one is the strain free shear test, called 'free method', that is performed by the free condition of allowing tensile strain. The other is the strain fix shear test, called 'fixed method', that is performed by the fixed condition of not allowing tensile strain. Two reinforcements were used such as nonwoven geotextile and geogrid. That is, interfaces are composed of geogrid/sand and geotextile/sand. From the test results it shows us that the fixed method had a greater friction angle and a smaller peak shear strain than those of the free method. Residual stress of the fixed method was bigger than that of the free method but the residual stress ratio was vice versa.

  • PDF

Evaluation For Mechanical Properties of High strength Concrete by Stressed Test and Tressed Residual Strength Test (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성평가 -제 1보, 강도특성을 중심으로-)

  • Lee, Tae-Gyu;Kim, Young-Sun;Lee, Eui-Bae;Park, Chan-Gyu;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.869-872
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the material mechanical properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen.

  • PDF

Evaluation for mechanical properties of high strength concrete by stressed test and stressed residual strength test - part 2 strain properties - (설계하중 사전재하 및 잔존강도 시험방법에 따른 고강도콘크리트의 고온특성 평가 - 제2보 변형특성을 중심으로 -)

  • Kim, Young-Sun;Lee, Tae-Gyu;Lee, Dae-Hui;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.761-764
    • /
    • 2008
  • The present study is aimed to study the effect of elevated temperatures ranging from 20 to $700^{\circ}C$ on the strain properties of high-strength concrete of 40, 60, 80MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. Or specimens are loaded to failure after 24hour cooling time. tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. thermal strain of concrete at high temperature was affected by the preload as well as the compressive strength.

  • PDF

Estimation of Degree of Weathering in Residual Soil Using Water Content from Fall Cone Test Result (Fall cone test의 함수비를 이용한 잔적토의 풍화도 측정)

  • Son, Young-Hwan;Chang, Pyoung-Wuck;Kim, Seong-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.13-23
    • /
    • 2007
  • Weathered soils appear from the rock and its weathering result. In accordance with the degree of weathering the roch may become soft rock, weathered rock and residual soil. In general, classification method for determining the degree of weathering are performed by chemical method and N-value. But these method have some problems. So, this research is to suggest an appropriate physical method to determine the degree of weathering of weathered soils. A new classification method for determining the degree of weathering is suggested, based upon the results from fall cone test. According to the proposed physical method using fall cone apparatus, the measured values of the samples from the same area show distinctive difference of weathering. For the checking, we selected two areas. As a result, the relationship between CWI and water content according to penetration is expressed as an equation in Ilsan and Incheon area. And it proved to be a good method to determine the degree of weathering.

Numerical study on Jarque-Bera normality test for innovations of ARMA-GARCH models

  • Lee, Tae-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.453-458
    • /
    • 2009
  • In this paper, we consider Jarque-Bera (JB) normality test for the innovations of ARMA-GARCH models. In financial applications, JB test based on the residuals are routinely used for the normality of ARMA-GARCH innovations without a justification. However, the validity of JB test should be justified in advance of the actual practice (Lee et al., 2009). Through the simulation study, it is found that the validity of JB test depends on the shape of test statistic. Specifically, when the constant term is involved in ARMA model, a certain type of residual based JB test produces severe size distortions.

  • PDF

Fully Automatic Heart Segmentation Model Analysis Using Residual Multi-Dilated Recurrent Convolutional U-Net (Residual Multi-Dilated Recurrent Convolutional U-Net을 이용한 전자동 심장 분할 모델 분석)

  • Lim, Sang Heon;Lee, Myung Suk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In this paper, we proposed that a fully automatic multi-class whole heart segmentation algorithm using deep learning. The proposed method is based on U-Net architecture which consist of recurrent convolutional block, residual multi-dilated convolutional block. The evaluation was accomplished by comparing automated analysis results of the test dataset to the manual assessment. We obtained the average DSC of 96.88%, precision of 95.60%, and recall of 97.00% with CT images. We were able to observe and analyze after visualizing segmented images using three-dimensional volume rendering method. Our experiment results show that proposed method effectively performed to segment in various heart structures. We expected that our method can help doctors and radiologist to make image reading and clinical decision.

The Effect of Fatigue Fracture in shot peening Marine structural steel at stress ratio (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • Park, Kyoung-Dong;Han, Kun-Mo;Jin, Young-Beom
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.138-144
    • /
    • 2003
  • Rencentely, the request for the light weight is more incresed in the area of industrial environment and machinery and consistent effort is needed to accomplish high strength of material for the direction of light weight. we got the following characteristic from crack growth test carried out in the range of stress ration of 0.1, 0.3 and 0.6 by means of opening mode displacement. At the content stress ratio, the threshold stress intensity factor crack range ${\Delta}K_{th}$in the early stage of fatigue crack growth (Region I) and dtress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. Fatigue life shows more improvement in the Shot-peened material than in the Un-peening material. And compressive residual stress of surface on the Shot peening processed operate resistance force of fatigue. So we can obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is depend on Paris equation. (2) Although the maxium compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maxium compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Application of random regression models for genetic analysis of 305-d milk yield over different lactations of Iranian Holsteins

  • Torshizi, Mahdi Elahi;Farhangfar, Homayoun;Mashhadi, Mojtaba Hosseinpour
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1382-1387
    • /
    • 2017
  • Objective: During the last decade, genetic evaluation of dairy cows using longitudinal data (test day milk yield or 305-day milk yield) using random regression method has been officially adopted in several countries. The objectives of this study were to estimate covariance functions for genetic and permanent environmental effects and to obtain genetic parameters of 305-day milk yield over seven parities. Methods: Data including 60,279 total 305-day milk yield of 17,309 Iranian Holstein dairy cows in 7 parities calved between 20 to 140 months between 2004 and 2011. Residual variances were modeled by homogeneous and step functions with 7 and 10 classes. Results: The results showed that a third order polynomial for additive genetic and permanent environmental effects plus a step function with 10 classes for the residual variance was the most adequate and parsimonious model to describe the covariance structure of the data. Heritability estimates obtained by this model varied from 0.17 to 0.28. The performance of this model was better than repeatability model. Moreover, 10 classes of residual variance produce the more accurate result than 7 classes or homogeneous residual effect. Conclusion: A quadratic Legendre polynomial for additive genetic and permanent environmental effects with 10 step function residual classes are sufficient to produce a parsimonious model that explained the change in 305-day milk yield over consecutive parities of Iranian Holstein cows.

Investigation into a Chemical Cracking and the Measurement of Stress in a Polycarbonate Specimen through Deformation Jig (변형지그를 이용한 폴리카보네이트 시편의 케미컬 크랙킹 및 응력측정에 관한 연구)

  • Yoo, Seo Jeong;Hong, Hyoung Sik;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.645-649
    • /
    • 2014
  • The causes of residual stress in an injection molded part are high temperature variation and shear stress during molding process. Chemical cracking test is one of the methods of measuring residual stress and cracks are developed according to the degree of residual stress. In this study, the relationship between chemical cracking and exerted stress have been investigated. Deformation jig was designed and used to give a stress through deformation in a specimen. Specimens were molded by a hot press using polycarbonate (PC) and annealed to remove residual stresses in the specimens. Specimens were fixed in the deformation jig and immersed into the solvent to create cracks in the specimens. Solvents were prepared by using tetrahydrofuran and methyl alcohol. As stress accordance with the deformation in the specimen increased, the frequency and density of cracks in the specimen also increased. The results of this study can be used for the measurement of residual stress quantitatively in an injection molded PC product using a chemical cracking method.

Re-distribution of Welding Residual Stress Due to Tensile Pre-load and Its Effects on Fatigue Strength in Padding Plate Weldment (Padding plate 용접구조의 인장 정하중 이력에 의한 용접잔류응력 변화 및 피로강도에의 영향)

  • S.W. Kang;Y.W. Kim;W.S. Kim;D.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.75-82
    • /
    • 2001
  • Static loadings on ship structure induced either by water pressure before service such as a tank test and ballasting or by cargo pressure during first laden voyage cause relatively much greater stress than dynamic loadings induced by wave. With these static pre-loadings, the initial residual stresses around welded joint, where fatigue strength is concerned(in most cases, where stress concentration occurs) are expected to be shaken-down in a great extent by the elasto-plastic deformation behavior of material. Therefore, it is more resonable to assess the fatigue strength of ship structure with S-N data which have taken into account the effect of shaken-down residual stresses(re-distributed stresses) on the fatigue strength. In this research work, the re-distribution of residual stresses by the tensile pre-loading is measured using an ordinary sectioning method for specimens of padding plate weldment. Fatigue tests are performed also to evaluate the fatigue strength of the both as-welded and pre-loaded specimens.

  • PDF