• 제목/요약/키워드: Residual Layer Formation

검색결과 67건 처리시간 0.019초

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

레지스트 잔류층 두께와 몰드 유입속도가 기포결함에 미치는 영향에 대한 수치해석 (Numerical Analysis of Effects of Velocity Inlet and Residual Layer Thickness of Resist on Bubble Defect Formation)

  • 이우영;김남웅;김동현;김국원
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.61-66
    • /
    • 2015
  • Recently, the major trends of NIL are high throughput and large area patterning. For UV NIL, if it can be proceeded in the non-vacuum environment, which greatly simplifies tool construction and greatly shorten process times. However, one key issue in non-vacuum environment is air bubble formation problem. In this paper, numerical analysis of bubble defect of UV NIL is performed. Fluent, flow analysis focused program was utilized and VOF (Volume of Fluid) skill was applied. For various resist-substrate and resist-mold angles, effects of velocity inlet and residual layer thickness of resist on bubble defect formation were investigated. The numerical analyses show that the increases of velocity inlet and residual layer thickness can cause the bubble defect formation, however the decreases of velocity inlet and residual layer thickness take no difference in the bubble defect formation.

UV임프린트 공정에서 임프린팅 가압력 및 가압시간에 따른 레진 잔막 두께형성에 대한 실험연구 (Study on the Formation of Residual Layer Thickness by Changing Magnitude and Period of UV Imprinting Pressure)

  • 신동혁;장시열
    • Tribology and Lubricants
    • /
    • 제26권5호
    • /
    • pp.297-302
    • /
    • 2010
  • This study is focused on the resin layer formation of UV imprinting process by changing imprinting pressure and period. The mold shape is made for the process of window open over the pattern transfer area and the imprinting period is assigned as the time just before the UV light curing. The residual layer is measured by changing the imprinting period and pressure magnitude, and the measured data of residual layer provides useful information for the design of the process conditions of imprinting processes.

직접 용액 코팅법에 의해 제조한 CuInSe2 에 잔존하는 탄소 불순물층 형성에 관한 연구 (On Formation of Residual Carbon Layer in CuInSe2 Thin Films Formed via direct Solution Coating Process)

  • 안세진;;어영주;곽지혜;윤경훈;조아라
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.36-39
    • /
    • 2014
  • Formation mechanism of residual carbon layer, frequently observed in the $CuInSe_2$ (CIS) thin film prepared by direct solution coating routes, was investigated in order to find a way to eliminate it. As a model system, a methanol solution with dissolved Cu and In salts, whose viscosity was adjusted by adding ethylcellulose (EC), was chosen. It was found that a double layer, a top metal ion-derived film and bottom EC-derived layer, formed during an air drying step presumably due to different solubility between metal salts and EC in methanol. Consequently, the top metal ion-derived film acts as a barrier layer inhibiting further thermal decomposition of underlying EC, resulting a formation of bottom carbon residue layer.

The Epoxy-metal Interphase and Its Incidence on Practical Adhesion

  • Roche, Alain Andre;Aufray, Maelenn
    • 접착 및 계면
    • /
    • 제4권2호
    • /
    • pp.1-9
    • /
    • 2003
  • Epoxy-amine liquid prepolymers are extensively applied onto metallic substrates and cured to obtain painted materials or bonded joint structures. Overall performances of such systems depend on the created interphase between the organic layer and the substrate. When epoxy-amine liquid mixtures are applied onto more or less hydrated metallic oxide layer, concomitant amine chemical sorption and hydroxide dissolution appear lending to the chelate formation. As soon as the chelate concentration is higher than the solubility product, these species crystallize as sharp needles. Moreover, intrinsic and thermal residual stresses are developed within painted or bonded systems. When residual stresses are higher than the organic layer/substrate adhesion, buckling, blistering, debonding may occur leading to a catastrophic drop of system performances. Practical adhesion can be evaluated with either ultimate parameters (Fmax or Dmax) or the critical strain energy release rate, using the three point flexure test (ISO 14679-1997). We observe that, for the same system, the ultimate load decreases while residual stresses increase when the liquid/solid time increases. Ultimate loads and residual stresses depend on the metallic surface treatment. For these systems, the critical strain energy release rate which takes into account the residual stress profile and the Young's modulus gradient remains quite constant whatever the metallic surface treatment was. These variations will be discussed and correlate to the formation mechanisms of the interphase.

  • PDF

나노임프린트 공정에서의 충전과정과 잔류층 형성에 관한 연구 (A Study on the Filling Process and Residual Layer Formation in Nanoimprint Lithography Process)

  • 이기연;김국원
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.3835-3840
    • /
    • 2012
  • 최근 나노임프린트 리소그래피 공정이 마이크로/나노 스케일의 소자 개발에 있어서 경제적으로 대량 생산할 수 있는 기술로 주목 받고 있다. 나노임프린트 공정에 대해서, 최근까지 수많은 연구가 이루어지고 있으나, 대부분 R&D 수준의 재료 및 제조와 관련된 실험적 결과 혹은 공정이해 수준의 수치해석적 연구에 그치고 있다. 본 연구에서는 유한요소법을 이용한 점탄성 해석모델을 완성하여 나노임프린트 공정의 충전과정 및 잔류층 형성을 해석하고, 패턴 전사 실험을 통하여 해석의 정확성을 검증하였다.

세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향- (Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation-)

  • 신형섭
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가 (Evaluation of the Residual Stress with Respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor)

  • 심재준;한동섭;한근조
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.532-538
    • /
    • 2004
  • MEMS technology applying to the sensors and micro-electro devices is complete system. These microsystems are made by variable processes. Especially, the mentallization process has very important functions to transfer the power operating the sensor and signal induced from sensor part. But in the structures of MEMS the local stress concentration and deformation are often yielded by an irregular geometrical shape and different constraint. Therefore, this paper studies the effect of supporting type and thickness ratio about thin film of the substrate on the residual stress variation when the thermal loads is applied to the multi-layer thin film fabricated by metallization process. Specimens were made from several materials such as Al, Au and Cu. Then, uniform thermal load was applied, repeatedly. The residual stress was measured by FE Analysis and nano-indentation method using AFM. Generally, the specimen made of Al induced the larger residual stress than that of made of other materials. Specimen made of Cu and Au having the low thermal expansion coefficient induces the minimum residual stress. Similarly, the lowest indentation length was measured by nano-indentation method in the Si/Au/Cu specimen. Particularly, clusters are created in the specimen made of Cu by thermal load and the indentation length became increasingly large by cluster formation.

소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(III) (A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method (III))

  • 정연길;최성철;박철원
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1337-1348
    • /
    • 1995
  • TZP/SUS- and ZT/SUS-functionally gradient materials (FGM) were fabricated by pressureless sintering in Ar-atmosphere. The sintering defects such as warping, frustrum formation, splitting and cracking which originated from shrinkage and sintering behaviors of metal and ceramics different from each other could be controlled by the adjustment with respect to the particle size and phase type of zirconia. The residual stresses generated on the metal and ceramic regions in FGM were characterized with X-ray diffraction method, and relaxed as the thickness and number of compositional gradient layer were increased. The residual stress states in TZP/SUS-FGM have irregular patterns by means of the different sintering behavior and cracking at ceramic-monolith. While in ZT/SUS-FGM, compressive stress is induced on ceramic-monolith by the volume expansion of monoclinic ZrO2 at phase transformation. Also, compressive stress is induced on metal-monolith by the constraint of warping which may be created to the metal direction by the difference of coefficient of thermal expansions. As a consequence, it has been verified that the residual stress generated on FGM is dominantly influenced by the thickness and number of compositional gradient layer, and the sintering defects and residual stress can be controlled by the constraint of the difference of shrinkage and sintering behaviors of each component.

  • PDF

저 탄소강의 오스테나이트 질화 시 암모니아 가스첨가 조건변화가 표면층 조직 및 기공변화에 미치는 영향 (Effect of Changes in Condition of Ammonia Gas Addition on the Surface Layer Microstructure and Porosity during Austenitic Nitriding of Low Carbon Steels)

  • 이제원;노용식;성장현;임수근
    • 열처리공학회지
    • /
    • 제32권5호
    • /
    • pp.201-211
    • /
    • 2019
  • Low carbon steel (S20C steel) and SPCC steel sheet have been austenitic nitrided at $700^{\circ}C$ in a closed pit type furnace by changing the flow rate of ammonia gas and heat treating time. When the flow rate of ammonia gas was low, the concentration of residual ammonia appeared low and the hardness value of transformed surface layer was high. The depth of the surface layer, however, was shallow. With increasing the concentration of residual ammonia by raising up the ammonia gas flow, both the depth of the surface layer and the pore depth increased, while the maximum hardness of the surface layer decreased. By introducing a large amount of ammonia gas in a short time, a deep surface layer with minimal pores on the outermost surface was obtained. In this experiment, while maintaining 10~12% of residual ammonia, the flow rate of inlet ammonia gas, 7 liter/min, was introduced at $700^{\circ}C$ for 1 hour. In this condition, the thickness of the surface layer without pores appeared about $60{\mu}m$ in S20C steel and $30{\mu}m$ in SPCC steel plate. Injecting additional methane gas (carburizing gas) to this condition played a deteriorating effect due to promoting the formation of vertical pores in the surface layer. For $1^{st}$ transformed surface layer for S20C steel, maintaining 10~12% residual ammonia condition via austenitic nitriding process resulted in ${\varepsilon}$ phase with relatively high nitrogen concentration (just below 4.23 wt.%N) among the mixed phases of ${\varepsilon}+{\gamma}$. The ${\varepsilon}$ phase was formed a specific orientation perpendicular to the surface. For $2^{nd}$ transformed layer for S20C steel, ${\gamma}$ phase was rather dominant (just above 2.63 wt.%N). For SPCC steel sheet, there appeared three phases, ${\gamma}$, ${\alpha}(M)$ and weak ${\varepsilon}$ phase. The nitrogen concentration would be approximately 2.6 wt.% in these phases condition.