• Title/Summary/Keyword: Residual Error

검색결과 604건 처리시간 0.036초

16-QAM 신호에 대한 이중 구조 CR-CMA 적응 등화기의 성능 (The Performance of Dual Structure CR-CMA Adaptive Equalizer for 16-QAM Signal)

  • 윤재선;임승각
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.107-114
    • /
    • 2012
  • 본 논문은 기존 블라인드 등화기의 성능인 수렴 특성과 잔류 부호간 간섭의 영향을 경감시키기 위해 축소 신호점을 사용하고 비용 함수를 실수부와 허수부로 분리하여 처리하는 한 이중 구조 CR-CMA(Constellation Reduction CMA)에 관한 것이다. 기존의 CMA는 진폭만을 보상하고 위상은 보상을 하지 못하며, 이를 해결하기 위해 MCMA(Modified CMA)는 비용 함수만을 실수부와 허수부를 따로 처리하여 진폭과 위상을 보상하지만 진폭의 보상 능력과 초기 수렴 속도에서는 CMA보다 성능이 열악해지는 문제점이 있다. 제안하는 이중 구조 CR-CMA는 CMA와 MCMA(Modified CMA) 알고리즘 장점만을 살릴 수 있도록 비용 함수와 오차 함수를 실수부와 허수부로 나누어 처리하고 축소 신호점을 적용할 수 있도록 개량하여 진폭과 위상의 보상, 빠른 수렴 속도 및 잔류 ISI와 MD(Maximum Distortion) 량의 감소 그리고 MSE(Mean Square Error)와 양호한 심볼 오류율 (SER : symbol error ratio) 특성을 얻을 수 있음을 컴퓨터 시뮬레이션으로 확인하였다.

QE-MMA 적응 등화 알고리즘에서 양자화기 비트수와 Stepsize에 의한 성능 평가 (A Performance Evaluation of QE-MMA Adaptive Equalization Algorithm based on Quantizer-bit Number and Stepsize)

  • 임승각
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.55-60
    • /
    • 2021
  • 본 논문은 시분산 채널에서 발생되는 비선형 찌그러짐에 의한 부호간 간섭을 줄일 수 있는 QE-MMA 적응 등화알고리즘에서 양자화 비트수와 stepsize에 의한 성능 평가에 관한 것이다. QE-MMA는 송신 신호 고차 통계치와 오차신호 부호만을 이용하는 SE-MMA에서 오차 신호의 크기를 power-of-two 연산을 적용하여 탭 계수 갱신 시 필요한 승산과 가산을 천이와 가산만으로 대체하여 H/W 응용을 용이하도록 제안되었다. 그러나 QE-MMA에서 오차의 부호를 얻기 위한 오차 신호의 발생 시 stepsize와 양자화기 비트수에 의해 적응 등화 성능이 상이하게 되며, 이를 시뮬레이션으로 확인하였다. 시뮬레이션 결과 QE-MMA 적응 알고리즘의 성능에서 정상 상태에 도달하기 위한 수렴 속도는 stepsize에 의해 결정되며 정상 상태 이후의 잔여량은 양자화 비트수에 의해 결정됨을 확인하였다.

Dither 신호를 이용한 DSE-MMA와 DQE-MMA 적응 등화 알고리즘의 성능 비교 (A Performance Comparison of DSE-MMA and DQE-MMA Adaptive Equalization Algorithm using Dither Signal)

  • 임승각;유정봉;강대수
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.45-50
    • /
    • 2022
  • 본 논문에서는 채널에서 발생되는 부호간 간섭을 줄이기 위한 적응 등화 알고리즘에서 dither 신호를 이용하는 DSE-MMA와 DQE-MMA 의 등화 성능을 비교하였다. 이들 알고리즘은 기존 MMA의 연산량을 줄이기 위하여 등장하였으며, 적응을 위한 오차 신호를 얻는 과정에서 dither 신호를 부가한 후 1 또는 N 비트의 양자화를 수행함으로서 양자화 오차 성분이 independent and identical 분포하도록 하여 적응 알고리즘의 robustness 성능을 개선할 수 있지만 정상 상태에서 MSE 성능이 열화된다. 논문에서는 동일한 채널과 신호대 잡음비에서 동일한 개념의 dithering에 의한 DSE-MMA와 DQE-MMA의 적응 등화 성능을 시뮬레이션을 통해 직접 비교하였다. 시뮬레이션 결과 DQE-MMA가 수렴 속도를 제외한 모든 성능 지수의 잔여량에서 DSE-MMA보다 우월함을 확인하였다.

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

Error Control Policy for Initial Value Problems with Discontinuities and Delays

  • Khader, Abdul Hadi Alim A.
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.665-684
    • /
    • 2008
  • Runge-Kutta-Nystr$\"{o}$m (RKN) methods provide a popular way to solve the initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users of software are typically asked to specify a tolerance ${\delta}$, that indicates in somewhat vague sense, the level of accuracy required. It is clearly important to understand the precise effect of changing ${\delta}$, and to derive the strongest possible results about the behaviour of the global error that will not have regular behaviour unless an appropriate stepsize selection formula and standard error control policy are used. Faced with this situation sufficient conditions on an algorithm that guarantee such behaviour for the global error to be asympotatically linear in ${\delta}$ as ${\delta}{\rightarrow}0$, that were first derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II) (Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II))

  • 장병희;이승훈;김양원
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

주파수 응답함수를 이용한 부분구조 합성에서 모드자름 오차 보정에 관한 수치적 연구 (A Case Study on the Importance of Residual Compensation in FRF-based Substructuring)

  • 박윤식;김경호
    • 한국소음진동공학회논문집
    • /
    • 제12권4호
    • /
    • pp.302-309
    • /
    • 2002
  • A FRF-based substructuring method attempts to predict the dynamic characteristics of a complex structure from predetermined FRFs of the comprising uncoupled substructures. Although this method has the advantage of being able to incorporate experimental component FRFs directly, it is prone to errors : measurement errors, coordinate incompleteness, modal incompleteness, etc. Among the various sources of errors, this paper deals with the problem of modal incompleteness (or residual problem) of which importance is underestimated compared to others. It is a well-known rule of thumb that such a problem can be overcome by including modes up to 2 or 3 times the upper frequency of interest. Using a simulated case study, it is demonstrated that even including modes up to 20 times the upper frequency of interest does not guarantee a satisfactory result. A method to compensate the residual errors is introduced. This method requires the whole FRF matrices of substructures which is practically impossible for a complex structure. An applicable alternative is suggested and applied successfully to the case study. Finally, the effects of measurement errors on the residual compensation are also discussed.

전기화학적 방법의 TRC(Total residual chlorine) 측정 연구(II: Pt전극 이용) (The Determination of TRC using an Electrochemical Method (II: Pt electrode))

  • 이준철;박대원
    • 한국물환경학회지
    • /
    • 제30권3호
    • /
    • pp.304-310
    • /
    • 2014
  • The conventional methods for total residual chlorine such as iodometry and DPD colorimetric can cause secondary pollution due to additional agents, also have a wide error range. As for alternative, electrochemical method can measure TRC(Total residual chlorine), and is not required as additional agents, also very suitable for using the fields of ballast water because test time is relatively fast. Therefore, this study was investigated for changing charge by agitation, salt concentration, and temperature change. Charge showed differences based on changes of reduction peak with or without agitation. In contrast, TRC and charge were well correlated in constant agitation speed. As TRC and charge were analyzed with high correlations in constant salinity and temperature of ocean, thereby conductivity was firstly measured, and charge had high correlation for TRC in spite of changing salinity and temperature Pt electrode revealed high reliability ($r^2=0.960$) because it was rarely effected by TRC, On the other hand, Au electrode appeared inadequate ($r^2=0.767$) to use sensor in less than 1.0 ppm of TRC. For high accuracy and detection of TRC, Pt and Au electrodes for test time were, respectively, 14 and 22 seconds. As a result, Pt electrode was more valuable than Au electrode in terms of response time.

직류옵셋제거필터에 의한 거리계전기법의 성능 개선에 관한 연구 (A Study on Performance Enhancement of Distance Relaying by DC Offset Elimination Filter)

  • 이경민;박유영;박철원
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.67-73
    • /
    • 2015
  • Distance relay is widely used for the protection of long transmission line. Most of distance relay used to calculate line impedance by measuring voltage and current using DFT. So if there is a computation error due to the influence of phasor by DC offset component, due to excessive vibration by measuring line impedance, overreach or underreach can be occurs, and then abnormal and non-operation of distance relay can be issue. It is very important to implement the robust distance relaying that is not affected by DC offset component. This paper describes an enhanced distance relaying based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any prior information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced distance relay uses fault current as well as residual current. The behavior of the proposed distance relaying using off-line simulation has been verified using data about several fault conditions generated by the ATP simulation software.