• Title/Summary/Keyword: Residential Environment Evaluation

Search Result 228, Processing Time 0.022 seconds

A Study on Spatial Characteristics of Post-Disaster Interim Housing - Focusing on Asian Precedents of Natural Disasters - (재난 이후 임시주거의 공간특성 연구 - 아시아지역에서 발생한 자연재난을 중심으로 -)

  • Kim, sara;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.5
    • /
    • pp.108-116
    • /
    • 2015
  • This study intends to research the spatial characteristics of Asian interim housing that accommodates sufferers pro tempore after disasters. The scope of this research covers the interim spaces used for housing people after natural disasters that occurred in Asia for the past fifteen years. Within this scope, literature review was conducted as the basis to derive the characteristics and environmental elements of interim housing, which provided the criteria to compare and evaluate cases of interim housing along with characteristic elements required of interim housing found in previous studies. According to literature review, interim housing can be classified by life-span, region, economy, climate, type, number of household, square measure, residential cost, structure/material, and service life. Within the scope of the present research, literature review showed a total of twenty-eight cases of interim housing in fifteen countries revealing a high rate of disaster occurrence in the subtropic and tropic climate of Southeast Asia. A great percentage of interim housing was used for long-term stay of over a year. The structure of interim housing varied from lightweight steel, wooden, masonry, membrane, to traditional structure and the type were divided into temporary shelter, transitional housing, temporary housing, and permanent housing. Followed by literature review, the characteristics required of post-disaster interim housing were analyzed based on previous research and case studies. The characteristics of interim housing can be divided into environmental, technological, and socio-cultural ones. Sub-characterical items according to such division include amenity, health, surroundings, structure, convenience, eco-friendliness, safety, communication, and locality. As a result of evaluation, most items met the required characteristics of interim housing, while technological characteristics such as structure and convenience varied with the types of interim housing and appeared even unnecessary in some cases. According to analysis, amenity is maintained through the structural and material characteristics of interim housing and is also facilitated by increasing number of infrastructure such as educational, sanitary, and convenience facilities provided by the governmental and organizational bodies. It is expected that this study will be utilized as preliminary data for follow-up studies that improve the environment of post-disaster interim housing suitable for domestic circumstances in environmental, technological, and socio-cultural respects.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Evaluations of Ecological Habitat, Chemical Water Quality, and Fish Multi-Metric Model in Hyeongsan River Watershed (형산강 수계의 생태 서식지, 화학적 수질 및 어류의 다변수모델 평가)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.279-287
    • /
    • 2010
  • This study was to evaluate ecological conditions of Hyeongsan River watershed from April to September 2009. The ecological health assessments was based on Qualitative Habitat Evaluation Index (QHEI), water chemistry during 2000~2009, and the fish multi-metric model, Index of Biological Integrity (IBI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. Values of IBI averaged 25.4 (n=6), which is judged as a "fair" condition (C) after the criteria of Barbour et al. (1999). The distinct spatial variation was found in the IBI. Physical habitat health, based on the values of QHEI, varied from 76 in the downriver (H6) to 150.5 in the headwater (H1) and was evidently more disturbed in the downriver reach. Values of BOD and COD averaged 2.4 $mgL^{-1}$ (range: 0.3~13.8 $mgL^{-1}$) and 4.3 $mgL^{-1}$ (scope: 0.6~12.8 $mgL^{-1}$), respectively during the study period. Total nitrogen (TN) and total phosphorus (TP) averaged 3.0 $mgL^{-1}$ and 103.5 ${\mu}gL^{-1}$, respectively, indicating a severe eutrophication, and the nutrients increased more in the downriver than the headwater. Overall, physical, chemical and IBI parameters showed a typical downriver degradation along main axis of the river from the headwater-to-the downriver. This was mainly attributed to livestock waste and residential influences along with industrial discharge from the urban region.

Analysis of Behavioral Characteristics by Park Types Displayed in 3rd Generation SNS (제3세대 SNS에 표출된 공원 유형별 이용 특성 분석)

  • Kim, Ji-Eun;Park, Chan;Kim, Ah-Yeon;Kim, Ho Gul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • There have been studies on the satisfaction, preference, and post occupancy evaluation of urban parks in order to reflect users' preferences and activities, suggesting directions for future park planning and management. Despite using questionnaires that are proven to be affective to get users' opinions directly, there haven been limitations in understanding the latest changes in park use through questionnaires. This study seeks to address the possibility of utilizing the thirdgeneration SNS data, Instagram and Google, to compare behavior patterns and trends in park activities. Instagram keywords and photos representing user's feelings with a specific park name were collected. We also examined reviews, peak time, and popular time zones regarding selected parks through Google. This study tries to analyze users' behaviors, emerging activities, and satisfaction using SNS data. The findings are as follows. People using park near residential areas tend to enjoy programs being operated in indoor facilities and to like to use picnic places. In an adjacent park of commercial areas, eating in the park and extended areas beyond the park boundaries is found to be one of the popular park activities. Programs using open spaces and indoor facilities were active as well. Han River Park as a detached park type offers a popular venue for excercises and scenery appreciation. We also identified companionship characteristics of different park types from texts and photos, and extracted keywords of feelings and reviews about parks posted in $3^{rd}$ generation SNS. SNS data can provide basis to grasp behavioral patterns and satisfaction factors, and changes of park activities in real time. SNS data also can be used to set future directions in park planning and management in accordance with new technologies and policies.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.

Debris flow characteristics and sabo dam function in urban steep slopes (도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능)

  • Kim, Yeonjoong;Kim, Taewoo;Kim, Dongkyum;Yoon, Jongsung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.627-636
    • /
    • 2020
  • Debris flow disasters primarily occur in mountainous terrains far from cities. As such, they have been underestimated to cause relatively less damage compared with other natural disasters. However, owing to urbanization, several residential areas and major facilities have been built in mountainous regions, and the frequency of debris flow disasters is steadily increasing owing to the increase in rainfall with environmental and climate changes. Thus, the risk of debris flow is on the rise. However, only a few studies have explored the characteristics of flooding and reduction measures for debris flow in areas designated as steep slopes. In this regard, it is necessary to conduct research on securing independent disaster prevention technology, suitable for the environment in South Korea and reflective of the topographical characteristics thereof, and update and improve disaster prevention information. Accordingly, this study aimed to calculate the amount of debris flow, depending on disaster prevention performance targets for regions designated as steep slopes in South Korea, and develop an independent model to not only evaluate the impact of debris flow but also identify debris barriers that are optimal for mitigating damage. To validate the reliability of the two-dimensional debris flow model developed for the evaluation of debris barriers, the model's performance was compared with that of the hydraulic model. Furthermore, a 2-D debris model was constructed in consideration of the regional characteristics around the steep slopes to analyze the flow characteristics of the debris that directly reaches the damaged area. The flow characteristics of the debris delivered downstream were further analyzed, depending on the specifications (height) and installation locations of the debris barriers employed to reduce the damage. The experimental results showed that the reliability of the developed model is satisfactory; further, this study confirmed significant performance degradation of debris barriers in areas where the barriers were installed at a slope of 20° or more, which is the slope at which debris flows occur.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.