• Title/Summary/Keyword: Residential Consumption

Search Result 316, Processing Time 0.026 seconds

Impacts of Resource Perception of Residence Area on the Evaluation of Preferred Destination Abroad - Focusing on Personal Value and Lifestyle

  • Kim, Min-Hwa;Kim, Eun-Jung;Kim, Hong-Bumm
    • International Journal of Contents
    • /
    • v.5 no.3
    • /
    • pp.24-32
    • /
    • 2009
  • Personal value and lifestyle have been regarded as the common factors in many studies of the destination selection. And the evaluations by visitors or tourists of certain destinations have been conducted in many respects. Based on those influential factors and measures from the review of the previous researches, this article considers the impact of residents' evaluation of the tourism resources in their own resident area on selecting destinations of their future overseas trips as well as their personal value and lifestyle. This article is aimed to reveal whether the impact exists, and if so, to what extent this impact can expand. According to the result, perception of tourism resources in residential area has impact on preferred destination, although its impact was relatively less than those of personal value and lifestyle. The more highly perceived the tourism resources are found, the more preferred tourist destination with abundant tourism attractions are. And the lowly perceived the cost of living in residential area is found, the more preferred the consumption-oriented tourist destinations are. It would be helpful for the product developers like travel agents or product marketers to know and predict the tendency of people s present evaluation of their areas and the future destination selection tendency for their trips.

Optimal Load Control Method for Solar-Powered House with Energy Storage System (전력저장장치를 이용한 태양광주택의 최적부하제어기법)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.644-651
    • /
    • 2014
  • The renewable energy system and the real-time pricing can provide the significant economic advantage for end-user of residential house. However, according to recent studies, high initial cost of renewable energy system such as photovoltaic (PV) system and lack of suitable load control methods adjusting electric power consumption in response to time-varying price are regarded as the major obstruction for introduction of renewable energy system and real-time pricing in residental household. In this paper, we propose automated optimal load control strategy which aim to achieve not only minimizing the electricity cost but also the increase in the utilization rates of PV generation power of residential PV house in real-time pricing environment. Simulation results show that our proposed optimal load control strategy leads to significant reduction in the electricity costs and increase in the utilization rates of power generated by PV system in comparison with the conventional PV house. Therefore, the proposed optimal load control strategy can provide more economic benefit to end-user.

Function of Home Energy Savings and Carbon Emission Reduction by Urban Vegetation- Case of Chuncheon- (도시식생의 주택에너지절약 및 탄소배출저감 기능 -춘천시를 대상으로-)

  • 조현길;서옥하;한갑수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.104-117
    • /
    • 1998
  • Rising concern about climate change has evoked interest in the potential for urban vegetation to help reduce the level of atmospheric CO\sub 2\, a major heat-trapping gas. This study quantified the functio of home energy savings and carbon emission reduction by shading, evapotranspiration and windspeed reduction of urban vegetatioin in Chuncheon. Tree and shrub cover averaged approximately 13% in residential land. The effects of shading, evapotranspiration and windspeed reduction annually saved heating energy by 2.2% and cooling energy by 8.8%. The heating and cooling energy savings reduced carbon emissions by 3.0% annually. These avoided emissions equaled the amount of carbon emitted annually from fossil fuel consumption by a population of about 1,230. Carbon emission reduction per residential building was 55kg for detached buildings and 872 kg for multifamily buildings. Urban vegetation annually decreased heating and cooling energy cost by ₩1.1 billions, which were equivalent to annual savings of ₩10,000 savings and carbon emission reduction due to tree plantings in the wrong locations, while windspeed reduction had a great effect. Plantings fo large trees close to the west and east wall of buildings, full tree plantings on the north, and avoidance of shade-tree plantings or selection of solar-friendlytrees on the south were recommended to improve the function of building energy savings and carbon emission reduction by urban vegetation.

  • PDF

Overcoming Electrical Energy Efficiency Gap in Nepal's Residential Sector

  • Thapa, Shahadev;Kim, Yun Seon
    • Asia Pacific Journal of Business Review
    • /
    • v.3 no.1
    • /
    • pp.19-38
    • /
    • 2018
  • The energy intensity of Nepal is economically not worthy, lacks eco-friendly and importantly not sustainable, and almost four times the average global energy intensity. Considerable efforts have been exercised to reduce the energy gap yet, it is still much to achieve. Nation priority on energy sector was envisaged with promulgation of investment friendly rules and law in hydropower and renewable technology even though, could not harness the sufficient energy. In amid of this acute energy crisis, the government launched the Nepal Energy Efficiency Programme (NEEP) with technical assistance from German International Cooperation (GIZ). Energy Efficiency (EE) practice is the most cost-effective method to reduce the supply and demand gap, reduce on greenhouse gases and pollution, and deter on import of petroleum products which finally improves on trade imbalance. This paper had proposed a framework of energy management team to promote energy efficient technologies in residential consumer. The energy management teams study the past records of energy use pattern of consumers and suggest appropriate technology for energy saving options. The paper provides some reviews of energy efficiency initiatives undertaken by the concern regulatory body which highlights the current status. The comprehensive knowledge acquired through exploratory research is implemented in this paper to identify the various barriers that domestic consumer is experiencing towards the active participation in energy efficiency program launched by the Government of Nepal.

Alternative Strategies to Central Heating Ventilation and Air Conditioning

  • Shrestha, Pramen P.;Prgada, Mythili
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.401-407
    • /
    • 2022
  • Central heating, ventilation and air conditioning (HVAC) is one of the largest consumers of energy in the residential sector. This project explores the use of multiple HVAC units and/or Zoning in a single residence to reduce energy loads. The energy consumption data of a detached single-family home using two HVAC units, one primary for the main house and a secondary HVAC for a casita, was collected for the same month for two consecutive years, along with details related to the outdoor temperature and the square footage being air-conditioned by each HVAC. A regression algorithm was trained using the above details to find the relation between the parameters. Next, based on the occupancy and usage patterns, the HVAC was redesigned assuming more area under the secondary HVAC unit. The trained algorithm was then used to make energy usage predictions for the revised primary HVAC area, with the assumption that the secondary HVAC unit was turned off. The results were compared with existing energy usage data. It was determined that there were significant energy savings in the second scenario. It is expected that this study and its findings will help future research projects explore more ideas as alternatives to central HVAC, in improving the economic viability of existing options, and in developing a savings calculation tool that will help consumers make informed decisions on their best alternatives to central HVAC.

  • PDF

The Optimal Design and Economic Evaluation of a Stand-Alone RES Energy System for Residential, Agricultural and Commercial Sectors (신재생에너지 기반 독립 에너지공급 시스템 최적 설계 및 에너지수요 부문별 경제성 평가)

  • Kim, Kihyeon;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.470-478
    • /
    • 2016
  • Greenhouse gas (GHG) emissions caused by fossil fuels consumption is one of the challenging issues worldwide. Renewable energy source (RES)-based energy supply system can be a promising alternative to the current fossil fuel-based system. In this study, we propose an optimization approach for designing a stand-alone hybrid energy supply system using RES and evaluating economic performances of the energy systems. The suggested approach is used to answer the questions; i) what technology is suitable to various demand sectors in different regions, and ii) how does it cost to meet the demand in term of the levelized costs of energy (LCOE). We illustrate the applicability of the proposed approach by applying to the design problem of energy supply systems for residential, agricultural and commercial sectors of Korea. As the results of LCOE analysis, for the residential sector has the LCOE ranging of $0.37~$0.44/kWh, the agricultural sector of $0.15~$0.61/kWh and the commercial sector of $0.12~$0.28/kWh.

Energy Performance Evaluation of a Double-skin Facade with a Venetian Blind in Residential Buildings (주거건물용 이중외피 시스템의 블라인드 조절에 따른 에너지 성능평가에 관한 연구)

  • Lee, So-Yeun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Apartment balcony has been remodeled since the government permitted remodeling in January 2006.But extended balcony has great impact on building heat gain and loss. Therefore It has problems such as increase of heating and cooling energy. So $\underline{t}echnical$ solutions about window solar gain in summer is an urgent matter. The Purpose of this study is to evaluate energy performance of a blind in a double-skin facade in residential buildings by using EnergyPlus program. The results show that slat angles of $90^{\circ}$ is best in energy performance if we do not consider daylight. Poorly daylighted living room needs electric light and it also causes high cooling load. On the other hand, the results show that the application of blinds controlled automatically is best for energy performance when we consider daylight. Blind slat angles of $50\sim60^{\circ}$ have best performance when blinds are controlled in this angle throughout the day on a clear day in August. Blind slat angles of $0\sim30^{\circ}$ have best performance when blinds $\underline{are\;controlled}$ in this angle throughout the day on a cloudy day (more than 7 of total sky cover) in August.

Optimum Method of Windows Remodeling of Existing Residential according to the Window Properties and Window Wall Ratio (창호의 성능 및 건물의 창면적비에 따른 기존 단독주택의 창호 리모델링 방안 연구)

  • Lee, Na-Eun;Ahn, Byung-Lip;Jeong, Hak-Geun;Kim, Jong-Hun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • A need for building energy efficiency is on the issue since energy demand in the building stock in Korea represents about 24% of the final energy consumption. As a way of improving the thermal performance of buildings for reducing maintenance costs and environmental conservation, a lot of effort is shown to improve the building energy efficiency by applying improvement of envelope insulation performance for buildings whose energy efficiency is low relatively through the remodeling. The windows of building envelopes are areas that lead to the biggest heat loss in the building. So windows are considered to be the primary target of energy efficiency in remodeling and various studies for windows have been done. Currently, however, only U-factor and airtightness of windows performance are regulated. Window wall ratio(WWR) and solar heat gain coefficient(SHGC) of windows are not considered when conducting the remodeling. In this study appropriate performance of windows(U-factor and SHGC) for existing residential is proposed according to the window wall ratio by using EnergyPlus. As the results of this study, the U-factor of windows representing the maximum energy savings is $1.0W/m^2K$ but in case of SHGC, the values that indicate the maximum energy savings are different depending on the window wall ratio. Therefore, when conducting the remodeling of windows, to determine energy efficiency by considering only the U-factor is inadequate so it is necessary that appropriate windows are applied to buildings by considering window wall ratio and windows properties(U-factor and SHGC).

Design and Implementation of An Authentication System for Residential Permit Parking Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 거주자우선주차 인증시스템의 설계 및 구현)

  • Park, Jun-Sik;Kwon, Chun-Ja;Kim, Hyun-Chun;Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1037-1045
    • /
    • 2007
  • An efficient management system for parking lots and traffic monitoring in a metropolitan city is a very important issue, which is tightly closed to qualify of life. While a residential permit parking program has been contributing to resolve the lack of parking places, there has been no autonomous authentication system due to no apparent entrance gate and smallness of each parking zone. In this paper, we propose and implement an authentication system for residential permit parking lot using wireless sensor networks, which is cost-effective and even no need for additional managing person. Through the experimental evaluation, we analyzed relationship between the life time of sensor nodes and the various values of sleep periods to minimize power consumption of the nodes, and also showed that the difference of luminance sensed by each sensor node is at least 45 or bigger between when the parking place is occupied or not, resultingly it can be used to decide whether a parking place is occupied or not by simply detecting the change of luminance sensed.

Energy Transition Trend in Residential Complexes for Carbon Neutrality (탄소중립을 위한 주거단지에서의 에너지 전환 동향)

  • Lee, Taegoo;Han, Younghae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • Carbon neutrality refers to a state in which there is no global increase in CO2 emissions due to human activities. In Korea, for carbon neutrality, green remodeling of existing buildings and customized support tasks for zero energy in new buildings are presented. Germany is showing fundamental changes in energy supply, such as applying renewable energy and higher energy efficiency from nuclear and fossil fuels, which were the existing energy sources. In this study, how Germany establishes policies for carbon neutrality at each state level and the cases applied to increase the energy efficiency of the actually applied residential complexes are analyzed based on this. As a result of the case complex analysis, it was found that the construction direction was being promoted as a zero-energy complex or a carbon-neutral complex by gradually reducing the energy demand in buildings and supplying additional energy with new and renewable energy in the low-energy building distribution in the 1990s. In Germany's ecological complex, energy standards have been strengthened from low-energy architecture to plus-energy architecture over time, and annual heating energy consumption standards and heat transmittance rates for each structure have been achieved at a higher level. The results of this analysis will serve as basic data and derivation of applicable items when planning residential complex development and remodeling of existing buildings for the domestic carbon-neutral goal in the future.