• Title/Summary/Keyword: Residence zone

Search Result 95, Processing Time 0.022 seconds

A Study on Residential Environment and Factor of Downtown Area in Big Cities - Apartment house residents in Gwangju City - (대도시 도심지역의 거주환경과 거주요인에 관한 연구 -광주광역시 도심지역의 아파트 거주자를 중심으로-)

  • 김명호;이봉수;유창균;조용준
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.167-172
    • /
    • 2002
  • This study examines and analyzes residential environment and factors with partial region of Chungjang-dong, Dong-gu, Gwangju based on land register and questionnaire. Consequently, most of residents are in their forties or over and working at downtown or place near it. It is found that rate of their own house is high and they live in the current house over 10 years. Residential factors at downtown area include its convenience, distance to workplace, convenient transportation and easy use of cultural and commercial facilities, but their consciousness of residence shows a low satisfaction with children education, air pollution, noise, parking facilities, green zone for making community, resting place, sunshine, view and privacy.

  • PDF

Variations of Calcium, Bicarbonate, and Cation in the Lacustrine Zone by Interannual Differences in Up-River Discharge

  • An, Kwang-Guk;Lee, Jae-Hoon;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.471-476
    • /
    • 2010
  • Monthly up-river discharge in the riverine zone analysis resulted in large interannual variations and differences in calcium ($Ca^{2+}$), bicarbonate ($HCO_3^-$), and cations in the lacustrine zone (Lz) of Daecheong Reservoir during the wet year (Wy, 1993) vs. dry year (Dy, 1994). Total up-river discharge in the Wy was four times that of the Dy, and the up-river discharge in July~August of the Wy was eight times greater than that of same period of Dy. Annual water retention time in the Lz showed large difference between the two years. Water residence time (WRT) was minimum when the up-river discharge peaked, whereas the WRT was maximum when the up-river discharge was at minimal condition. This peak discharge from the up-river on early July reduced residence time in the Lz on mid-July~late July. Monthly pattern, based on data of May~November, was similar between the two years, but, but mean retention time in the Wy was 50 days shorter than in the Dy. Such hydrology, up-river discharge, and WRT reduced $Ca^{2+}$, $HCO_3^-$, and cations in the Lz. At low up-river discharge in Wy during April~May, the cation content of Ca+Mg+Na+K averaged 1.17meq $L^{-1}$ (range=1.09-1.26meq $L^{-1}$), but as the up-river discharge increased suddenly, the values decreased. Seasonal fluctuations of $Ca^{2+}$ showed exactly same pattern with bicarbonate ion of $HCO_3^-$. The minimum $Ca^{2+}$ (0.03meq $L^{-1}$) was occurred in the early August of wet year and coincided with the minimum $HCO_3^-$. These results suggest that the magnitude of variation in $Ca^{2+}$, bicarbonate, and cations in the lacustrine zone is directly determined by the peak magnitude of up-river discharge. The magnitude of up-river discharge determined water retention time and the magnitude of ionic dilution in the lacustrine zone, resulting in functional changes of the ecosystem.

Estimation of the Residence Time for Renewal of the East Sea Intermediate Water using MICOM

  • Seung, Young-Ho;Kim, Kuk-Jin
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 1997
  • Miami Isopycnic Coordinate Ocean Model is applied to the East Sea to estimate the renewal time of the upper Intermediate Water The model gives about 10 years of renewal time. Extrapolating this result to the whole water mass below, including the upper Intermediate Water, leads to about 81.4 years of renewal time, which is quite comparable to that obtained by Kim and Kim (1997) based on the recent observations. Deep winter mixing occurs in the north of the basin. The areas of the largest water mass conversion, from the upper mixed to the intermediate below, are along the periphery of the deep mixing zone. Large portion of the renewed Intermediate Water then advects along the Korean and Japanese coasts. It is concluded that the high-oxygen content Intermediate Water found off the Korean coast (Kim and Chung, 1984) is in part locally formed but mostly advected from the deep mixing zone.

  • PDF

New Method to Quantify the Operation Condition for Zone 3 Impedance Relays during Low-Frequency Power Swings

  • Li, Shenghu
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.29-35
    • /
    • 2008
  • With long time setting, zone 3 impedance relays are considered insensitive to power swings, and their operation condition during power swings is seldom analyzed. Instead of ti me-consuming simulation to the swing loci, their operation condition is directly quantified by polynominal functions in this paper to find the critical swing angle and frequency for relay operation under different relay settings and system parameters. It is found: (1) the swing loci are more densely populated inside than outside of the protection region, which corresponds to long residence time and possible relay operations; (2) the relays may be sensitive to load encroac hments and stable power swings with different relay settings and system parameters; (3) the critical swing frequency may be in the range of low-frequency power swings.

Combustion Characteristics for Varying Flow Velocity on Methane/Oxygen Diffusion Flames (메탄 산소 확산화염에서 유속 변화에 따른 연소특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1277-1284
    • /
    • 2005
  • The combustion characteristics of methane oxygen diffusion flames have been investigated to give basic information for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since the small amount of nitrogen is included from the current low cost oxygen production process. Flame lengths decreased with increasing fuel or oxygen velocity because of the enhancement of mixing effect. Correlation equation between flame length and turbulent kinetic energy was proposed. NOx concentration was reduced with increasing fuel or oxygen velocity because of the enhanced entrainment of the product gas into flame zone as well as the reduction of residence time in combustion zone.

Numerical Simulation of Slab Reheating Furnace by the Zone Method (분할법을 이용한 슬래브 가열로의 전열 해석)

  • 박흥수;이용국;김기홍;조길원;민병현;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.970-981
    • /
    • 1991
  • 본 연구에서는 총괄 열 흡수율법과 분할법이 지니고 있는 전열 해석상의 한계 를 보완하고 슬래브 가열로의 전열해석에 실질적으로 적용하기 위하여, 분할법으로 내 내 분위기 온도를 계산하고 이로부터 슬래브의 노내 온도이력을 예측하는 계산모델을 제시하였다. 계산모델의 유용성 확인을 위하여는, Fig.1에 보인 바와 같은 최대 슬 래브 처리량이 235ton/hr인 후판 가열로를 대상으로 하여, 노내 분위기 가스 온도 및 슬래브의 온도이력을 측정하고 이를 계산 결과와 비교하였다. 이와 아울러 연료유량, 슬래브 재로시간(residence time) 및 장입 온도등의 조업조건 변화가 분위기 가스온도 와 슬래브의 온도이력에 미치는 영향을 검토하여 가열로의 효율적 조업을 위한 자료를 제시하였다.

Effect of Flow Distribution on the Combustion Efficiency In an Entrained-Bed Coal Reactor (분류층 석탄반응로에서 유동분포가 연소성능에 미치는 영향)

  • CHO, Han Chang;SHIN, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • A numerical study was carried out to analyze the effect of flow distribution of stirred part and plug flow part on combustion efficiency at the coal gasification process in an entrained bed coal reactor. The model of computation was based on gas phase eulerian balance equations of mass and momentum. The solid phase was described by lagrangian equations of motion. The $k-{\varepsilon}$ model was used to calculate the turbulence flow and eddy dissipation model was used to describe the gas phase reaction rate. The radiation was solved using a Monte-Carlo method. One-step parallel two reaction model was employed for the devolatilization process of a high volatile bituminous Kideco coal. The computations agreed well with the experiments, but the flame front was closer to the burner than the measured one. The flow distribution of a stirred part and a plug flow part in a reactor was a function of the magnitude of recirculation zone resulted from the swirl. The combustion efficiency was enhanced with decreasing stirred part and the maximum value was found around S=1.2, having the minimum stirred part. The combustion efficiency resulted from not only the flow distribution but also the particle residence time through the hot reaction zone of the stirred part, in particular for the weak swirl without IRZ(internal recirculation zone) and the long lifted flame.

The Performance Evaluation of a Gas Turbine Combustor (가스터빈 연소기의 성능평가)

  • Ahn, Kook-Young;Kim, Han-Seok;Ahn, Jin-Hyuk;Pae, Hyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1294-1299
    • /
    • 2000
  • The combustion characteristics have been investigated to develop the 50 kW-class gas turbine combustor. The combustor design program was developed and applied to design this combustor. The combustion air which has the temperature of 45, 200, $300^{\circ}C$ were supplied to combustor for elucidating the effect of inlet air temperature on CO, NOx emissions and flame temperature. The exit temperature and NO were increased and CO was decreased with increasing inlet air temperature. Also, the effect of equivalence ratio was considered to verify the combustor performance. The emissions of CO and NO with inlet air temperature can be analyzed qualitatively by measuring the temperature inside the combustor. The combustion performance with fuel schedule was evaluated to get the informations of the starting and part loading process of gas turbine. The combustion was stable above the equivalence ratio of 0.18. The pattern factor which is the important parameter of combustor performance was satisfied with the design criterion. Consequently the combustor was proved to meet the performance goal required for the target gas turbine system.

Estimation of material budget for Keum river estuary using a Box Model (BOX 모델을 이용한 금강 하구해역의 물질수지 산정)

  • Kim Jong-Gu;Kim Dong-Myung;Yang Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.76-90
    • /
    • 2000
  • The estimation of material cycle of pollutants is necessary for the environment management in coastal zone. Model for material budgets are useful tools to understand the phenomena of natural system and to provide an insight into the complex processes including physical, chemical and biological processes occuring in natural system. Budgets of fresh water, salt and nutrients were estimated in order to clarify the characteristics of seasonal material cycle in Keum river estuary. Inflow volumes of freshwater into system was approximately 1.014×10/sup 8/~12.565×10/sup 8/m³/month and discharge in Keum river has occupied 99.7% of total freshwater. Seasonal variations of freshwater volume in the system were found to be very high in the range of about 4 ~ 14 times due to rainfall in summer season. Existing water mass of freshwater in system calculated by salt budget was approximately 0.339×10/sup 8/~0.652×10/sup 8/m³. Mean residence time of freshwater was calculated to be about 1.6~10.0day, and exchange time was calculated to be about 2.2~11.9day. Mean residence time was short as 1.6day in summer due to precipitation, and long as 10.1day in winter due to a drought. Inflow masses of DIP and DIN were approximately 5.57~32.68ton/month and 234.93~2,373.39ton/month, respectively. Seasonal inflow mass of DIP was larger than the outflow mass except for summer season. Thus, we postulate that accumulation of DIP in the system will happen. Residence times of DIP and DIN were calculated to be 1.1~6.4day and 1.8~10.9day, respectively. The ratio of water residence time versus DIP, DIN residence time was calculated to be 0.39~2.31 times and 0.83~1.13 times, respectively.

  • PDF

Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber (연소실 압력 강하에 의한 고체 추진제의 동적 소화)

  • Jeong, Ho-Geol;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Dynamic extinction of solid propellants subjected to rapid pressure drop was studied with the aid of energy equation of condensed phase and flame model in gas phase. It is found that the total residence time($\tau_\gamma$) which measures the residing time of fuel in the reaction zone may play a crucial role in determining the dynamic response of the combustuion to extinction. Residence time was modeled by various combinations of diffusion and chemocal kinetic time scale. Effect of pressure history coupled with chamber volume on the extinction response was also performed and was found that dynamic extinction is more susceptible in a confined chamber than in open geometry. And, dynamic extinction was revealed to be affected profoundly by diffysion time scale rather than chemical kinetic time scale.