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Estimation of the Residence Time for Renewal of the East Sea
Intermediate Water using MICOM

Younc Ho Seung AND Kuk JIN KM
Dept. of Oceanogr., Inha Univ.

Miami Isopycnic Coordinate Ocean Model is applied to the East Sea to estimate the renewal
time of the upper Intermediate Water. The model gives about 10 years of renewal time. Ex-
trapolating this result to the whole water mass below, including the upper Intermediate Water,
leads to about 81.4 years of renewal time, which is quite comparable to that obtained by Kim
and Kim (1997) based on the recent observations. Deep winter mixing occurs in the north of the
basin. The areas of the largest water mass conversion, from the upper mixed to the intermediate
below, are along the periphery of the deep mixing zone. Large portion of the renewed In-
termediate Water then advects along the Korean and Japanese coasts. It is concluded that the
high-oxygen content Intermediate Water found off the Korean coast (Kim and Chung, 1984) is
in part locally formed but mostly advected from the deep mixing zone.

INTRODUCTION

A surface layer called the Tsushima Current
Water (TCW) enters into the East Sea through the
Korea Strait (Fig.1). A small portion of it flows
along the Japanese coast due to the topographic
control (Yoon, 1982b) and the rest flows northward
along the Korean Coast, forming the East Korean
Warm Current (EKWC). The EKWC separates from
the coast near 38° N, then moves eastward toward
the Tsugaru and Soya Straits, where it leaves the
East Sea. North of the warm current region, a cold
current called the North Korean Cold Current
(NKCC) or the Liman Current (LC) flows sou-
thward along the western boundary and meets with
the EKWC where the EKWC separates from the
coast. Most of these schematic features are generally
confirmed by numerical models (Yoon, 1982a and b;
Seung and Kim, 1993; Seung and Yoon, 1995b).
The separation of the EKWC and the formation of
the NKCC may be controlled by the wind stress curl
and the buoyancy flux (Seung, 1992).

Most of the East Sea basin is filled with a very
deep, cold and nearly homogeneous water, called
the Japan Sea Proper Water (JSPW). There have
been many questions about the formation, renewal
and circulation of the JSPW and many of them still
remain unknown. Recent observations indicate that
this water mass has contained also the salinity
minimum layer which is then named deep Inter-
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mediate Water in distinction from the conventional
upper Intermediate Water. According to these
observations, the JSPW has not been renewed for a
long time (Kim and Kim, 1997). The presence of
oxygen-rich Intermediate Water (IW) in the upper
part of the JSPW (Uda, 1934; Kim & Chung, 1984,
Kim et al., 1991), however, suggests that a part of
the deep/intermediate water is still formed some-
where. In fact, there is a dep winter mixing observed
in the northwestern part of the basin (Seung & Yoon,
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Fig. 1. Model domain with bottom topography. KR, TG
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1995a). Senjyu and Sudo (1994) also analysed the
historical data to show that the upper portion of the
JSPW extending over the whole basin originates
from the northwest. They also suggested that the
newly formed water mass circulates around the
basin anti-clockwisely.

Numerical models have been used to study the
deep circulation. Most of the models applied to the
East Sea are of the Bryan-Cox type (Bryan, 1969;
Cox, 1984), framed in the cartesian coordinates in
the vertical, upon which the primitive equations for
the fluid motion are discretised. Some layer models
have also been used in modelling the whole (Sekine,
1986) or a part (Kawabe, 1982) of the basin. How-
ever, they were not able to handle the vanishing or
outcropping of vertical layers, which is an essential
feature for the regions of deep water formation like
the one considered here. As noted in Seung and
Kim (1993), a long-term drift of warming and thic-
kening of deep layer is inevitable in these models
due to the numerically induced diapycnal diffusion.
The recently developed isopycnic coordinate ocean
models such as the one considered here can handle
these problems and are suitable in modeling the
formation and circulation of the IW in the East Sea.
This kind of model was first applied to the East Sea
by Seung and Kim (1995). Their model has used
simple dynamics with least dissipative effects,
idealized wind and buoyance forcings, and idealized
basin geometry. This model has successfully shown
the outcropping and formation of the IW. The roles
of three major forcings (inflow-outflow, wind and
buoyancy) driving the circulation have been ana-
lysed in this study. The isopycnic coordinate model
applied in present study (Bleck et al., 1992) is much
more advanced than the previous one (Seung and
Kim, 1995) in that it uses complete equations,
handles realistic bottom topography and deals with
variable mixed layer depth as well as it allows
surface and bottom outcroppings of isopycnic sur-
faces. As shown by Roberts et al. (1996), the
advantages of the isopycnic coordinate models over
those using cartesian vertical coordinate arise essen-
tially from the facts that mixing of fluid is largely
isopycnic and that the formers can cope with any
depth without the need of transforming it onto a
discrete set of depths.

As a first step to apply the Isopycnic Coordinate
model to the East Sea, we estimate in this paper the
time scale of renewal of the upper IW by using the
Miami Isopycnic Coordinate Ocean Model (Bleck et

al., 1992) with minimum resolution in both hori-
zontal and vertical directions.

MODEL

The model is the same as that used by Bleck et al.
(1992) except that inflow and outflow through open
boundaries are added. The model allows the free
surface and uses a mixed layer of the Kraus and
Turner (1967) type with dissipation parameterized
according to Gaspar (1988). It advances the baro-
tropic and baroclinic solutions using a split-explicit
scheme. The eddy viscosity used in isopycnal
mixing of momentum depends on the horizontal
shear, which is about 1,000 m?¥sec in this model. To
handle the advection of sharp discontinuity of
density interfaces, special schemes such as the Flux
Corrected Transport (Zalesak, 1979) and the Multi-
dimensional Positive Definite Advection Transport
Algorithm (Smolarkiewicz, 1983 and 1984) are emp-
loyed. For more details about the model, the reader
is referred to Bleck et al. (1992).

The model domain (Fig. 1) is divided into hor-
izontal grid of 0.5° by 0.5° in latitude and longitude.
Vertically, it is consisted of 4 layers. The first layer
(initial thickness 100 m) is the mixed layer which
has variable temperature and salinity, and depth.
The second layer (initial thickness 100 m) with

density 26.0 in sigma-t represents the TCW proper.

The third (density 27.20 and initial thickness 300 m)
and the fourth (density 27.45) ones represent, res-
pectively, the IW and the JSPW. In each layer
below the mixed layer, the salinity and layer thic-
kness are updated. The temperature is automatically
determined using the equation of state from the
updated salinity and the fixed density.

To impose the buoyancy forcing at the surface,
the mixed layer temperature and salinity are relaxed
to the measured surface temperature and salinity
values (JODC, 1978) using the Newtonian damping-
type restoring formula with the coefficient having
time scale one day; for the coefficient having time
scale 10 days, nearly the same patterns with rela-
tively reduced intensity are obtained. The tem-
perature and salinity data used above are the same
as those in Seung and Kim (1993). Direct appli-
cation of known heat and salt fluxes, if available, is
preferred. However, the estimation of heat and salt
fluxes are not yet considered to be quite certain. The
basin is also forced by surface wind stress available
from the daily atmospheric pressure charts (Na et al.,
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Fig. 2. Time series plots of the volume for each layer.

1992).

At the inflow opening (Korea Strait), a volume
transport of 1.6 Sv is imposed through the mixed
and second layers. Of this, 1.2 Sv flows out through
the Tsugaru Strait and 0.4 Sv through the Soya
Strait. Currents are assumed barotropic at the inlet
and outlets. At the inflow opening, the mixed layer
temperature, salinity and depth are also prescribed.
The prescribed values are deduced from the
observed ones (NFRDA, 1986) by assuming that the
temperature and salinity of the inflowing second
layer water (TCW) are constant. Instead, the tem-
perature and salinity in the mixed layer are allowed
to vary in such a way that the heat and salt within
the water column are conserved. At the outflow
openings, radiation boundary condition is applied
for temperature, salinity and layer thickness.

Tracer experiment is performed by releasing the
tracers in the mixed layer. The release is not
confined within a particular area because the mixed
layer is taken always saturated with the tracer.
Vertical exchange of the tracer between the mixed
and the layers below is determined by the mixed
layer depth variation. In general, the tracers in
layers below are lost to the mixed layer when the
formers are engulfed by the latter during the winter
convection but the formers gain more tracers from
the latter when the mixed layer base retreats upward
as spring heating progresses. The tracers left behind
in the layers below are carried away by advection
and diffusion within the layers. The isopycnal
diffusion velocity is taken here as 1 cm, which cor-
responds to the usual diffusion coefficient of about
5% 10° cm’/sec in this model. The detrainment of
the tracer from the mixed layer takes place either by
the retreatment of the base of mixed layer or by the
current crossing the interface.

RESULTS

The model was run for thirty years. Time series
plots of the volume in each layer (Fig. 2) indicate
large seasonal variations. The seasonal change
occurs mostly in winter and becomes smaller for
deeper layers. A quasi-steady state is reached after
30 years. The quasi-steady state is more evident in
time series plots of the kinetic energy in each layer
(Fig. 3). In winter, deep mixing reaches down to
about 500 m (Fig. 4), which is somewhat less
intense than, and which locates somewhat east of,
the observed one (Seung and Yoon, 1995a). Current
patterns in the mixed layer appear quite similar to
those obtained in previous models (Fig. 5):
summer, the EKWC strengthens and extends nor-
thward. In winter, it weakens and retreats southward
whereas the NKCC or the LC, flowing southward
along the Siberian/Korean coast, develops and
reaches far southward. This cold current has such a
strong barotropic structure that it is found deep
down to the bottom in January (Fig. 6). In February
when the third layer is encroached upon by the
mixed layer, currents follow largely the periphery of
the deep mixing area (Fig. 7 and 8). However, there
are components crossing the base of the mixed layer
into the third layer especially near the coastal
boundaries such as around 131° E, 41° N (Fig. 5 and
7). As explained later, this process may play an
important role in the deep water formation. In
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Fig. 7. Winter and summer distributions of the current
in the third layer after 30 years of run.

tributed by each component is shown for the third
(Fig. 16) and fourth (Fig. 17) layers. In the third
layer, the most intense detrainment occurs around
the periphery of the deep mixing zone although the
detrainment with lesser degree of intensity is a
ubiquitous feature over most of the basin. Re-
ferring to the current patterns in the mixed (Fig. 5)
and in the third (Fig. 7) layers, a part of the detra-
inment occurring here may be due to the direct
transport by horizontal current crossing the
interface from the mixed to the third layers, as it is
known for open oceans that most of the subduction
into the lower layers occurs by lateral induction
across the sloping base of the mixed layer rather
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Fig. 8. Same as Fig. 7 except for the fourth layer.

than by the Ekman pumping alone (New et al.,
1995). The areas gaining the tracer by advection
are the area inside the deep mixing zone and the
area along Korean and Japanese coasts. It seems
that the large amount of tracer detrained along the
periphery of the mixing zone is carried into these
areas. Large area just outside the deep mixing zone
also loses the tracer by advection. The 4th layer
gains most tracer inside the deep mixing zone by
detrainment; outside it, the loss by entrainment to
the upper layer is seen. The tracer inside the mixing
zone is then advected horizontally outward.
However, it does not take place along the coast as it
does in the third layer.
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the third layer. Tracer is released on the first January of
the same year.

CONCLUDING REMARKS

The results obtained in this model are not yet
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Fig. 10. Same as Fig. 9 except for the fourth layer.

verified by observation. However, these results can
be served as a guide to future investigations of the
layers of IW and JSPW. They indicate that the
residence time for renewal of IW is about ten years
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the third layer. Tracer is released at the beginning of
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and much longer than 20 years for the JSPW. A
rough estimation of the residence time for renewal
of the whole third and fourth layers is possible
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because the tracer exchange for these layers as a
whole occurs only through the upper boundary of
the third layer. The third layer has thickness of
about 350 m (superficial area of the basin is 1.16 X
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Fig. 13. Time series plots of the mean concentration over the third and fourth layers.
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10" m?). The residence time is proportional to the
total volume of the layer considered, which is about
2850 m multiplied by the superficial area in this
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case if the fourth layer thickness is taken as 2500 m.
The residence time then becomes about 8.14 times
that for the third layer alone, i.e., about 81.4 years,
which is quite comparable to that obtained by Kim
and Kim (1997) using a one dimensional model and
observations. The renewal occurs through the detra-
inment from the mixed layer in winter. The
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detrainment occurs over the large area of the basin
but especially intensively around the periphery of
the deep mixing zone, which forms in the northern
part of the basin in winter. The newly formed IW is
advected either to the inside of the mixing zone
or to Korean and Japanese coastal regions. From
the model results it seems that the IW of high
oxygen content found off Korean coast (Kim and
Chung, 1984) is in part locally formed but in most
part advected from the area of intense formation.
This advection seems to be carried out along
Korean coast. Further detailed examination of the
formation and circulation is possible only with
higher resolution in both the horizontal and the
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Fig. 17. Same as Fig.16 except for the fourth layer.

vertical directions. This study will be done in near
future.
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