• 제목/요약/키워드: Residence time of air

검색결과 139건 처리시간 0.029초

Hybrid receptor model을 이용한 대기 중 총 가스상 수은의 오염원 위치 추정 연구 (Identifications of Source Locations for Atmospheric Total Gaseous Mercury Using Hybrid Receptor Models)

  • 이용미;이승묵;허종배;홍지형;이석조;유철
    • 한국환경과학회지
    • /
    • 제19권8호
    • /
    • pp.971-981
    • /
    • 2010
  • The objectives of this study were to measure ambient total gaseous mercury (TGM) concentrations in Seoul, to analyze the characteristics of TGM concentration, and to identify of possible source areas for TGM using back-trajectory based hybrid receptor models like PSCF (Potential Source Contribution Function) and RTWC (Residence Time Weighted Concentration). Ambient TGM concentrations were measured at the roof of Graduate School of Public Health building in Seoul for a period of January to October 2004. Average TGM concentration was $3.43{\pm}1.17\;ng/m^3$. TGM had no notable pattern according to season and meteorological phenomena such as rainfall, Asian dust, relative humidity and so on. Hybrid receptor models incorporating backward trajectories including potential source contribution function (PSCF) and residence time weighted concentration (RTWC) were performed to identify source areas of TGM. Before hybrid receptor models were applied for TGM, we analysed sensitivities of starting height for HYSPLIT model and critical value for PSCF. According to result of sensitivity analysis, trajectories were calculated an arrival height of 1000 m was used at the receptor location and PSCF was applied using average concentration as criterion value for TGM. Using PSCF and RTWC, central and eastern Chinese industrial areas and the west coast of Korea were determined as important source areas. Statistical analysis between TGM and GEIA grided emission bolsters the evidence that these models could be effective tools to identify possible source area and source contribution.

에틸렌/공기 역 확산화염에서의 나노 매연 입자 생성 (Nano-Soot Particle Formation in Ethene/Air Inverse Diffusion Flame)

  • 이의주;신현준;오광철;신현동
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1101-1109
    • /
    • 2004
  • Experimental measurements of flame structure and soot characteristics were performed fur ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향 (Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor)

  • 류호정;박상수;문종호;최원길;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

균체고정화 생물반응기에서 산소공급에 의한 에탄올 생산성 향상 (Enhancement of Ethanol Productivity by Air Supplement in Immobilized Cell Reactor System)

  • 조의철;김정회;김영준
    • 한국미생물·생명공학회지
    • /
    • 제17권2호
    • /
    • pp.165-169
    • /
    • 1989
  • 고생산성의 알콜 발효용 생물반응기를 개발하기 위하여 sodium alginate로 효모균체를 고정화시킨 후 충전탑 반응기를 제조하였다. 이 때 gel속에 고정화되어 있는 세포에 산소를 공급하기 위하여 배지를 공기로 포화시킨 후 공급하였다. 그 결과 9% 포도당을 함유한 배지를 사용하였을 경우 최대 알콜생산성은 35g/$\ell$-gel-hr에서 55g/$\ell$-gel-hr로 증가되었고 90%의 전환율을 얻는데 걸리는 시간도 40분에서 25분으로 감소되었다. 즉 고정화세포 충전탑 반응기에서도 배지에 어느 정도의 산소를 공급하면 세포활성의 증가로 발효속도가 현저히 촉진됨을 알 수 있었다.

  • PDF

포항 지역 대기에서 측정된 에어로졸 입자분포 특성 연구 (A Characteristic Study of the Aerosol Size Distribution in Pohang Province)

  • 서문혁;장혁상
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.151-160
    • /
    • 2012
  • Health effects caused by the ultrafine particles in ambient air are great concern to the public health, and the strict measuring and monitoring of the ambient aerosol are required. In this work, the characteristics of the aerosol size distribution in Pohang province are studied. Optical particle counters (Grimm APS 1108 and 1109) were used to measure the aerosol size distribution in the area. Locations near the national monitoring site located in the industrial and the residence area were selected for the measuring sites of this study, and the locations in border area between the industry and the residence were selected for the reference of the comparison. In the industry site, it is found that the concentration of aerosol particles near the size of 5 ${\mu}m$ appear characteristically and the fluctuations in concentration with respect to time are minimal. The mass concentration of the aerosol above 10 ${\mu}m$ in diameter in the industry area was found to fluctuate significantly. The mass portion of $PM_{10}$ and PM2.5 to TSP in the residence area were 83% and 51% respectively. In the industrial regional, it was found that the mass portion of PM10 and $PM_{2.5}$ to TSP were 76% and 35% respectively. In the boundary area the mass portion of $PM_{10}$ and $PM_{2.5}$ to TSP were 78% and 54% respectively.

공기의 온도와 수증기가 목재 톱밥의 가스화에 미치는 영향 (The effect of oxidizer temperature and steam addition on gasification in wood sawdust)

  • 안성율;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.63-68
    • /
    • 2007
  • An experimental study was carried out to investigate gasification process of wood sawdust in the 1-dimensional downdraft fixed bed gasifier. The preheated air which was used oxidizer and steam were used as a gasifying agent. The downdraft fixed bed gasifier obtains more amount of hydrogen and methane by increasing residence time of supplied air. The operating parameters, the supplied air temperature and steam were used. The oxidizer temperature was varied from 500K to 620K and vapor was added. The gasification process was monitored by measuring temperature at three position near the biomass using R-type thermocouples and the syngas composition was analyzed by gas chromatograph. We get the sample gas at the end of gasifier and it was eonugh time to finishing the chemical reaction. Finally, the amount of hydrogen and methane were increased widely as increasing the oxidizer temperature and adding steam.

  • PDF

소각로의 연소 공기 유동 해석 (Analysis of Combustion Air Flow in Incinerator)

  • 이동혁
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

음파가진에 의한 동축공기 수소 확산화염의 NOx 배출저감연구 (Reduction of NOx Emissions in Turbulent Hydrogen Diffusion Flame using Acoustic Excitation)

  • 김문기;한정재;윤상욱;윤영빈
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.13-19
    • /
    • 2005
  • Measurements of flame length and NOx emissions have been conducted to investigate the effects of acoustic excitation on flame structure in turbulent hydrogen diffusion flames with coaxial air. When the acoustic excitation of a specific frequency is applied to coaxial air stream, flame length is dramatically reduced, resulting in reduction of flame residence time. Consequently, EINOx could decrease up to 35 % and this shows that acoustic excitation is effective in reducing NOx emissions. Mie scattering technique has been used to visualize the vortex structure induced by acoustic excitation and vortex formation, development and destruction were observed quantitatively. As a result, vortex entrains coflow air into fuel stream and mixing rate between fuel and air is significantly enhanced, which may contribute to reduction of NOx emissions.

  • PDF

공기 다단 분무연소기의 NOx 발생특성에 관한 실험적 연구 (Investigation of NOx Formation Charateristics in Multi Air Staged Spray Combustor)

  • 김한석;안국영;김호근;백승옥
    • 연구논문집
    • /
    • 통권31호
    • /
    • pp.23-43
    • /
    • 2001
  • An experimental investigation on the reduction of nitrogen oxide emission from swirling, turbulent diffusion flames was conducted using multi air staged combustor, The combustor utilizes swirler to dampen fuel/air mixing, allowing an extended residence time for fuel pyrolysis and fuel-N conversion chemistry in an locally fuel-rich environment prior to burnout. This process also allow to reduce thermal NOx formation to lessen the temperature of reaction zone. The aerodynamic process therefore emulates the conventional staged combustion process, but without the need for the physically separate fuel-rich and -lean stages. Parametric studies on the ratios of each staged air and droplet size were carried out the feasibility of fuel/air mixing for low NOx combustion with diesel and pyridine mixed diesel fuel oil.

  • PDF