• Title/Summary/Keyword: Reservoir sediment

Search Result 256, Processing Time 0.026 seconds

Ecological impact of fast industrialization inferred from a sediment core in Seocheon, West Coast of Korean Peninsula

  • Choi, Rack Yeon;Kim, Heung-Tae;Yang, Ji-Woong;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.212-221
    • /
    • 2020
  • Background: Rapid industrialization has caused various impacts on nature, including heavy metal pollution. However, the impacts of industrialization vary depending on the types of industrializing activity and surrounding environment. South Korea is a proper region because the rapid socio-economical changes have been occurred since the late nineteenth century. Therefore, in this study, we estimate the anthropogenic impacts on an ecosystem from a sediment core of Yonghwasil-mot, an irrigation reservoir on the western coast of Korea, in terms of heavy metal concentrations, nutrient influx, and pollen composition. Results: The sediment accumulation rate (SAR) determined by 210Pb geochronology showed two abrupt peaks in the 1930s and 1950s, presumably because of smelting activity and the Korean War, respectively. The following gradual increase in SAR may reflect the urbanization of recent decades. The average concentrations of arsenic (As), copper (Cu), and lead (Pb) during the twentieth century were > 48% compared to those before the nineteenth century, supporting the influence of smelting activity. However, at the beginning of the twenty-first century, the As, Cu, and Pb concentrations decreased by 19% compared to levels in the twentieth century, which is coincident with the closure of the smelter in 1989 and government policy banning leaded gasoline since 1993. The pollen assemblage and nutrient input records exhibit changes in vegetation cover and water level of the reservoir corresponding to anthropogenic deforestation and reforestation, as well as to land-use alteration. Conclusions: Our results show that the rapid socio-economic development since the twentieth century clearly affected the vegetation cover, land use, and metal pollutions.

Analysis of Sediment Reduction with VFS and Diversion Channel with Enhancements in SWAT Landuse-Subbasin Overland Flow and VFS Modules

  • Park, Youn-Shik;Kim, Jong-Gun;Kim, Nam-Won;Engel, Bernie;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.752-757
    • /
    • 2009
  • In the last decade, many methods such as greet chamber, reservoir, or debris barrier, have been utilized to manage and prevent muddy water problem. The Vegetative Filter Strip (VFS) has been thought to be one of the most effective methods to trap sediment effectively. The VFS are usually installed at the edge of agricultural areas adjacent to stream or drainage ditches, and it has been shown that the VFS effectively removes pollutants transported with upland runoff. But, if the VFS is installed without any scientific analysis of rainfall-runoff characteristics, soil erosion, and sediment analysis, it may not reduce the sediment as much as expected. Although Soil and Water Assessment Tool (SWAT) model has been used worldwide for many hydrologic and Non-Point Source Pollution (NPSP) analysis at a watershed scale. but it has many limitations in simulating the VFS. Because it considers only 'filter strip width' when the model estimates sediment trapping efficiency, and does not consider the routing of sediment with overland flow option which is expected to maximize the sediment trapping efficiency from upper agricultural subbasin to lower spatially-explicit filter strip. Therefore, the SWAT overland flow option between landuse-subbasins with sediment routing capability was enhanced with modifications in SWAT watershed configuration and SWAT engine. The enhanced SWAT can simulate the sediment trapping efficiency of the VFS in the similar way as the desktop VFSMOD-w system does. Also it now can simulate the effects of overland flow from upper subbasin to reflect the increased runoff volume at the receiving subbasin, which is what is occurring at the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watershed located at Jaun-ri in South Korea to simulate diversion channel and spatially-explicit VFS. It was found that approximately sediment can be reduced by 31%, 65%, 68%, with diversion channel, the VFS, and the VFS with diversion channel, respectively.

  • PDF

Underground temperature survey for the study of shallow groundwater flow system

  • Okuyama Takehiko;Kuroda Seiichiro;Nakazato Hiroomi;Natsuka Isamu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.690-694
    • /
    • 2003
  • Groundwater preferentially flows through sediment layers with high permeability such as colluvium. Its flow paths are called groundwater vein streams. An underground temperature survey is a method to locate vein streams by underground temperature anomalies associated with flowing groundwater. A groundwater flow system near an irrigation reservoir located in the upper part of a landslide block was surveyed with this method. After a geomembrane lining was installed in the reservoir, the total cross-sectional area of the vein streams in the aquifer decreased to as little as 0.35 times that before installation of the liner. A change in groundwater quality also indicated that the mixing of groundwater with leaked water from the reservoir stopped after installation of the lining.

  • PDF

A Study on the Gas Hydrate Productivity on the Sediment Properties (퇴적층 물성이 가스하이드레이트 생산성에 미치는 영향 연구)

  • Park, Seoung-Soo;Ju, Woo-Sung;Han, Jeong-Min;Lee, Kye-Jung;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.192-195
    • /
    • 2008
  • Conventional gas deposits consist of pressurized gas held in porous and permeable reservoir rocks and its recovery takes place where the natural pressure of the gas reservoir forces gas to the surface. But gas hydrate is a crystalline solid, its prospects require reservoir rock properties approprate porosity, permeability with mapping of temperature and pressure conditions to define the hydrate stability zone. In this study, we have carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water with depressurization scheme. Also, it has been conducted the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production.

  • PDF

Sediment Pollution of Heavy Metal and Potential Ecological Risk Assessment in Baiyangdian Lake, China

  • Li Guibao;Yang Zhuo;Wang Dianwu;Hao Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1-8
    • /
    • 2005
  • Baiyangdian Lake, the largest freshwater lake in North China, is known as 'Pearl of North China' and 'kidney of North China' fur its abundant products and multiple ecological services. However, from the 1970s, due to the ever-increasing discharge of polluted water from upstream rivers, it has been severely polluted. Sediment Investigation and analysis were conducted on contents of heavy metal (Cu, Zn, Cd and Pb) from Baiyangdian Lake in June 2004. Results showed that pollution situation at downriver regions are more serious than that of upstream regions. The seriously polluted spots are access of Fuhe River, original wastewater reservoir of Tanghe River, densely populated Chunshui Village and Wangjiazhai Village. By using method of the potential ecological risk assessment, the heavy metal evaluation of polluted sediment has been conducted. The results showed that the contents of Cd and Pb were very high in sediment of Baiyangdian Lake. There were extremely stronger ecological risk for Cd and slight- medium ecological risk for Pd. According to the current situation of Baiyangdian Lake, countermeasures and suggestions have been put forward.

  • PDF