DOI QR코드

DOI QR Code

Ecological impact of fast industrialization inferred from a sediment core in Seocheon, West Coast of Korean Peninsula

  • Choi, Rack Yeon (Department of Biology Education, Seoul National University) ;
  • Kim, Heung-Tae (Department of Biology Education, Seowon University) ;
  • Yang, Ji-Woong (Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, Universite Paris-Saclay) ;
  • Kim, Jae Geun (Department of Biology Education, Seoul National University)
  • Received : 2020.08.02
  • Accepted : 2020.08.31
  • Published : 2020.12.31

Abstract

Background: Rapid industrialization has caused various impacts on nature, including heavy metal pollution. However, the impacts of industrialization vary depending on the types of industrializing activity and surrounding environment. South Korea is a proper region because the rapid socio-economical changes have been occurred since the late nineteenth century. Therefore, in this study, we estimate the anthropogenic impacts on an ecosystem from a sediment core of Yonghwasil-mot, an irrigation reservoir on the western coast of Korea, in terms of heavy metal concentrations, nutrient influx, and pollen composition. Results: The sediment accumulation rate (SAR) determined by 210Pb geochronology showed two abrupt peaks in the 1930s and 1950s, presumably because of smelting activity and the Korean War, respectively. The following gradual increase in SAR may reflect the urbanization of recent decades. The average concentrations of arsenic (As), copper (Cu), and lead (Pb) during the twentieth century were > 48% compared to those before the nineteenth century, supporting the influence of smelting activity. However, at the beginning of the twenty-first century, the As, Cu, and Pb concentrations decreased by 19% compared to levels in the twentieth century, which is coincident with the closure of the smelter in 1989 and government policy banning leaded gasoline since 1993. The pollen assemblage and nutrient input records exhibit changes in vegetation cover and water level of the reservoir corresponding to anthropogenic deforestation and reforestation, as well as to land-use alteration. Conclusions: Our results show that the rapid socio-economic development since the twentieth century clearly affected the vegetation cover, land use, and metal pollutions.

Keywords

References

  1. Appleby PG, Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena. 1978;5(1):1-8. https://doi.org/10.1016/S0341-8162(78)80002-2
  2. Binford MW. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol. 1990;3(3):253-67. https://doi.org/10.1007/BF00219461
  3. Borges HV, Nittrouer CA. Sediment accumulation in Sepetiba bay (Brasil) during the Holocene: a reflex of the human influence. J Sediment Environ. 2016;1(1):90-106.
  4. Boynton WR, Garber JH, Summers R, Kemp WM. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected Tributaries. Estuaries. 1995;18:285-314. https://doi.org/10.2307/1352640
  5. Bradbury JP, van Metre PC. A land-use and water quality history of White Rock Lake reservoir, Dallas, Texas, based on paleolimnological analyses. J Paleolimnol. 1997;17:227-37. https://doi.org/10.1023/A:1007923829759
  6. Brewer S, Giesecke T, Davis BAS, Finsinger W, Wolters S, Binney H, de Beaulieu JL, Fyfe R, Gil-Romera G, Kühl N, Kunes P, Leydet M, Bradshaw RH. Late-glacial and Holocene European pollen data. J Maps. 2017;13(2):921-8. https://doi.org/10.1080/17445647.2016.1197613
  7. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl. 1998;8(3):559-68. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
  8. Castro SH, Sanchez M. Environmental viewpoint on small-scale copper, gold and silver mining in Chile. J Clean Prod. 2003;11:207-13. https://doi.org/10.1016/S0959-6526(02)00040-9
  9. Chang NK. Pollens, Illustrated Flora & Fauna of Korea, vol. 29. Seoul: Ministry of Education; 1986. (in Korean).
  10. Chang NK, Rim YD. morphological studies on the pollen of flowering plants in Korea. Seoul: Seoul National University Press; 1979. (in Korean).
  11. Cho J, Hyun S, Han JH, Kim S, Shin DH. Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea. Mar Pollut Bull. 2015;95(1):427-432. https://doi.org/10.1016/j.marpolbul.2015.03.034
  12. Craft CB, Richardson CJ. Peat accretion and N, P, and organic accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl. 1993;3:446-58. https://doi.org/10.2307/1941914
  13. Dean WE. Determination of carbonates and organic matter in calcareous sediment and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol. 1974;44:242-8.
  14. Facevicova K, Kynclova P, Upadhyaya S. How industrial development matters to the well-being of the population: some statistical evidence. Vienna: United Nations Industrial Development. Organization. 2020.
  15. Faegri K, Iverson J. Textbook of pollen analysis. 4th ed. Chichester: Wiley; 1989.
  16. Fowell SJ, Hansen BCS, Peck JA, Khosbayar P, Ganbold E. Mid to late Holoceneclimate evolution of the Lake Telmen Basin, North Central Mongolia, basedon palynological data. Quat Res. 2003;59(03):353-63. https://doi.org/10.1016/S0033-5894(02)00020-0
  17. Hilbig W. The Vegetation of Mongolia. Amsterdam: SPB Academic; 1995.
  18. Fowell SJ, Hansen BCS, Peck JA, Khosbayar P, Ganbold E. Mid to late Holoceneclimate evolution of the Lake Telmen Basin, North Central Mongolia, basedon palynological data. Quat Res. 2003;59(03):353-63. https://doi.org/10.1016/S0033-5894(02)00020-0
  19. Hopke PK, Lamb RE, Natusch FS. Multielemental characterization of urban roadway dust. Environ Sci Technol. 1980;14:164-72. https://doi.org/10.1021/es60162a006
  20. Jeong S, An J, Kim YJ, Kim G, Choi S, Nam K. Study on heavy metal contamination characteristics and plant bioavailability for soil in the Janghang smelter area. J Soil Groundwater Environ. 2011;16(1):42-50 (in Korean with English abstract). https://doi.org/10.7857/JSGE.2011.16.1.042
  21. Jung IW, Bae DH, Kim G. Recent trends of mean and extreme precipitation in Korea. Int J Climatol. 2011;31:359-70. https://doi.org/10.1002/joc.2068
  22. Kim DG. Secondary damage from an environmental pollution in incident and the restoration process: focusing on a village near Janghang smelter. J Inst Soc Sci. 2014;25(3):267-95 (in Korean with English abstract).
  23. Kim GY. Inhabitation of 13 Mandarins in National Institute of Ecology in Seocheon: Yunhap News Agency; 2012. http://news.naver.com/main/read.nhn?Mode=LSD&mid=sec&sid1=102&oid=001&aid=0005810404. Accessed 3 Aug 2020 (in Korean).
  24. Kim H, Kim JG. A 2000-year environmental history of the Upo Wetland on the Korean Peninsula. J Paleolimnol. 2010;44(1):189-202. https://doi.org/10.1007/s10933-009-9396-6
  25. Kim JG. A study on soil particle size in mountains of Seoul vicinity for forest restoration. J Korean Soc Environ Restoration Technol. 2002;5:1-8.
  26. Kim JG. Response of sediment chemistry and accumulation rates to recent environmental changes in the Clear Lake Watershed, California, USA. Wetlands. 2003;23:95-103. https://doi.org/10.1672/0277-5212(2003)023[0095:ROSCAA]2.0.CO;2
  27. Kim JG. Assessment of recent industrialization in wetlands near Ulsan, Korea. J Paleolimnol. 2005;33:433-44. https://doi.org/10.1007/s10933-004-7617-6
  28. Kim JG, Rejmankova E. The paleoecological record of human disturbance in wetlands of the Lake Tahoe Basin. J Paleolimnol. 2001;25:437-54. https://doi.org/10.1023/A:1011176018331
  29. Kim JG, Rejmankova E, Spanglet HJ. Implications of a sediment-chemistry study on subalpine marsh conservation in the Lake Tahoe Basin, USA. Wetlands. 2001;21(3):379-94. https://doi.org/10.1672/0277-5212(2001)021[0379:IOASCS]2.0.CO;2
  30. Kim S, An J, Kim I, Cho U, Lee H, Hwang D. A study on the flora and distribution of vegetation in Reservoir Jangchuck. J Wet Res. 2011;13(3):657-64 (in Koran with English abstract). https://doi.org/10.17663/JWR.2011.13.3.657
  31. Kim S, Baek S. Variation of cadmium and zinc content in paddy soil and rice from the Janghang smelter area. Korean J Environ Agric. 1994;13(2):131-41 (in Korean with English abstract).
  32. Kim S, Baek S, Moon K. Fraction of heavy metals and correlation with their contents in rice plant grown in paddy near smelter area. Korean J Environ Agric. 1996;15(1):1-10 (in Korean with English abstract).
  33. Lee JK, Oh JM. A study on the characteristics of organic matter and nutrients released from sediments into agricultural reservoirs. Water. 2018;10(8):980. https://doi.org/10.3390/w10080980
  34. Li C, Zheng Y, Yu S, Li Y, Shen H. Understanding the ecological background of rice agriculture on the Ningshao Plain during the Neolithic Age: pollen evidence from a buried paddy field at the Tianluoshan cultural site. Quat Sci Rev. 2012;35:131-8. https://doi.org/10.1016/j.quascirev.2012.01.007
  35. Li M, Song H, Woods AD, Dai X, Wignall PB. Facies and evolution of the carbonate factory during the Permian-Triassic crisis in South Tibet, China. Sedimentology. 2019;66(7):3008-28. https://doi.org/10.1111/sed.12619
  36. Liu Y, Yu N, Li Z, Wei Y, Ma L, Zhao J. Sedimentary record of PAHs in the Liangtan River and its relation to socioeconomic development of Chogqing, Southwest China. Chemosphere. 2012;89:893-9. https://doi.org/10.1016/j.chemosphere.2012.05.016
  37. Mackereth FJH. Some chemical observations on post-glacial lake sediments. Philos Trans R Soc Lond Ser B Biol Sci. 1966;250(765):165-213.
  38. Meyers PA, Tenser GE, Lebo ME, Reuter JE. Sedimentary record of sources and accumulation of organic matter in Pyramid Lake, Nevada, over the past 1,000 years. Limnol Oceanogr. 1998;43(1):160-9. https://doi.org/10.4319/lo.1998.43.1.0160
  39. Meyers PA, Teranes JL. Sediment organic matter. In: Last WM, Smol JP, editors. Tracking Environmental Change Using Lake Sediments. Physical and Geochemical Methods, vol. 2. Dordrecht: Kluwer Academic Publishers; 2001. p. 239-69.
  40. Miehe S, Miehe G, van Leeuwen JFN, Wrozyna C, van der Knaap WO, Duo L. Persistence of Artemisia steppe in the Tangra Yumco Basin, wet-central Tibet, China: despite or in consequence of Holocene lake-level changes? J Paleolimnol. 2014;51(2):267-85. https://doi.org/10.1007/s10933-013-9720-z
  41. Murray TE, Gottgens JF. Historical changes in phosphorus accumulation in a small lake. Hydrobiologia. 1997;345(1):39-44. https://doi.org/10.1023/A:1002948709051
  42. Nishihiro J, Kato Y, Yoshida T, Washitani I. Heterogeneous distribution of a floating-leaved plant, Trapa japonica, in Lake Mikata, Japan, is determined by limitations on seed dispersal and harmful salinity levels. Ecol Res. 2014;29:981-9. https://doi.org/10.1007/s11284-014-1186-6
  43. Olsson S, Regnéll J, Persson A, Sandgren P. Sediment-chemistry response to landuse change and pollutant loading in a hypertrophic lake. southern Sweden. J Paleolimnol. 1997;17(3):275-294. https://doi.org/10.1023/A:1007967832177
  44. Park JG. Technology, growth and agricultural development in Korea: past, present and future. Korea Agric Hist Assoc. 2003;2(2):105-27 (in Korean with English abstract).
  45. Park JJ, Shin YH. Late-Holocene rice agriculture and palaeoenvironmental change in the Yeongdong region, Gangwon. South Korea. J Korean Geogr Soc. 2012;47(5):641-53 (in Korean with English abstract).
  46. Park JM, Sung JS. A study on the industrial heritage in Jang hang. Geogr J Korea. 2012;46(2):107-20 (in Korean with English abstract).
  47. Renberg I, Persson MW, Emteryd O. Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature. 1994;368:323-6. https://doi.org/10.1038/368323a0
  48. Rose NL, Morley D, Appleby PG, Battarbee RW, Alliksaar T, Guilizzoni P, et al. Sediment accumulation rates in European lakes since AD 1850: trends, reference conditions and exceedance. J Paleolimnol. 2011;45(4):447-68. https://doi.org/10.1007/s10933-010-9424-6
  49. Routh J, Meyers PA, Gustafsson O, Baskaran M, Hallberg R, Scholdstrom A. Sedimentary geochemical record of human-induced environmental changes in the Lake Brunnsviken watershed, Sweden. Limnol Oceanogr. 2004;49(5):1560-9. https://doi.org/10.4319/lo.2004.49.5.1560
  50. Rubio L, Linares-Rueda A, Duenas C, Fernández MC, Clavero V, Niell FX, et al. Sediment accumulation rate and radiological characterization of the sediment of Palmones River estuary (southern of Spain). J Environ Radioact. 2003;65(3):267-80. https://doi.org/10.1016/S0265-931X(02)00102-9
  51. Shen J, Yang L, Yang X, Matsumoto R, Tong G, Zhu Y, et al. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Sci China Ser D. 2005;48(3):353-63. https://doi.org/10.1360/03yd0118
  52. Song YS, Choi JY, Park KH. The Tectono-metamorphic evolution of metasedimentary rocks of the Nampo group outcropped in the area of the Daecheon Beach and Maryangri, Seocheon-gun, Chungcheongnam-do. J Petrol Soc Korea. 2008;17(1):1-15 (in Korean with English abstract).
  53. Taylor KG, Owens PN. Sediments in urban river basins: a review of sediment-contaminant dynamics in an environmental system conditioned by human activities. J Soils Sediments. 2009;9(4):281-303. https://doi.org/10.1007/s11368-009-0103-z
  54. van Campo E, Cour P, Sixuan H. Holocene environmental changes in Bangong Co basin (Western Tiben). Part 2: The pollen record. Palaeogeogr Palaeoclimatol Palaeoecol. 1996;120:49-63. https://doi.org/10.1016/0031-0182(95)00033-X
  55. Woo S, Kim G, Kim Y, Nam K. Existing forms of heavy metals in the vicinity of a smelter. J Soil Groundw Environ. 2010;15(5):16-22 (in Korean with English abstract).
  56. Yi C, Chen H, Yang J, Liu B, Fu P, Liu K, Li S. Review of Holocene glacial chronologies based on radiocarbon dating in Tibet and its surrounding mountains. J Quat Sci. 2008;23:533-43. https://doi.org/10.1002/jqs.1228
  57. Yu S, Zhu YG, Li XD. Trace metal contamination in urban soils of China. Sci Total Environ. 2012;421:17-30. https://doi.org/10.1016/j.scitotenv.2011.04.020
  58. Zhu L, Zhen X, Wang J, Lu H, Xie M, Kitagawa H, Possnert G. A -30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. J Paleolimnol. 2009;42:343-58. https://doi.org/10.1007/s10933-008-9280-9