• Title/Summary/Keyword: Reservoir density flow

Search Result 44, Processing Time 0.025 seconds

A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir (실시간 저수지 탁수 감시 및 예측 모의)

  • Chung, Se-Woong;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes (입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링)

  • Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

Evaluating Effect of Density Flow from Upstream on Vertical Distribution of Water Quality at the Paldang Reservoir (팔당호 수질의 연직분포에 대한 밀도류 영향 평가)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.557-566
    • /
    • 2019
  • Paldang is a river reservoir in the Midwest of Korea, which is a drinking water source for the metropolitan area. Since the Paldang Reservoir is shallow, and has a short hydraulic residence time, its water quality is directly impacted by two incoming rivers, the north Han River (NHR) and the south Han River (SHR). The NHR has different seasonal patterns of water temperature from the SHR because the NHR is greatly impacted by the discharge water from upstream dams. The electrical conductivity (EC) and other material concentrations of the SHR are usually higher than those of the NHR because its basin is limestone-based. The difference in water temperature in the two rivers causes density flow, and the distribution of the EC within the reservoir can be an indicator for monitoring density flow. From the vertical gradient of the EC at the dam site, from spring to fall, it was confirmed that the SHR flowed into the upper layer, and the NHR flowed into the lower layer, and vice versa at other times. The relative difference (RD) of the EC between the upper layer and the lower layer at the dam site was used as an indicator for density flow. The RD of the EC showed a very significant correlation with the RD of total organic carbon (r = 0.70, p < 0.001) and the RD of total nitrogen (r = 0.58, p < 0.01). This relationship is based on the assumption that the difference in electrical conductivity and water quality between the SHR and the NHR is constant. However, in many cases this assumption is inconsistent. Thus, further study is needed on more suitable indicators to evaluate the impact of density flow on water quality.

Observation of Reservoir Current Using Drifter (The Case Study of Yongdam Reservoir) (Drifter를 이용한 저수지 수리거동 조사 (용담댐을 중심으로))

  • Lee, Yo-Sang;Koh, Deok-Koo;Chae, Hyo-Sok;Han, Kyung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.200-209
    • /
    • 2012
  • The current of the water body is very important information for the water quality management on reservoirs. It is applied to hydraulics and water quality model for simulation. In this regard, the current characteristic of water body is the basic information that can be used to predict various conditions. However, it is very slow flowing and is affected by the reservoir operations and external factors. As such, an accurate measurement of the current is a difficult problem. In order to measure the water current, we constructed a drifter. According to the result of flow survey at Yongdam reservoir, 5m and 10 m depth layer flow was investigated from the upstream to the downstream, during a flood period. Maximum flow rate of 5 m depth is 13.8 cm $sec^{-1}$ and 10 m depth shows 4 cm $sec^{-1}$, respectively. But 2m depth shows a backward flow and maximum flow rate is 4 cm $sec^{-1}$. Density currents flow plays the role of back flow in reservoirs. Flow velocity in the reservoir was measured in the range of 1~2 cm $sec^{-1}$, at normal flow season, and the flow direction were different for each survey. This phenomenon occurs because the reservoir volume is very large, compared to the inflow and outflow volume.

Analyzing Flow Variation and Stratification of Paldang Reservoir Using High-frequency W ater Temperature Data (고빈도 수온 자료를 이용한 팔당호의 성층과 흐름 변화 분석)

  • Ryu, In-Gu;Lee, Bo-Mi;Cho, Yong-Chul;Choi, Hwang-Jeong;Shin, Dong-Seok;Kim, Sang-Hun;Yu, Soon-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.392-404
    • /
    • 2020
  • The focus of this study was to quantify the thermal stratification and analyze the relationship between the stratification structure and the tributaries to understand flow variations in the Paldang Reservoir. The vertical distribution of the temperature and density gradients, and the depth and thickness of the thermocline were quantitatively calculated using a lake physics tool (rLakeAnalyzer) and high-frequency monitoring data. Based on a density gradient of 0.2 kg/㎥/m, the thermocline was formed from mid-May to early-September 2019 and the other periods were weakly stratified or mixed. The thickness of the thermocline was developed until 4.7 m and the depth of the thermocline was formed at a depth of 3 - 6 m at the front of the Paldang Reservoir. During the formation of the thermocline, the Namhangang and Gyeongancheon tributaries with relatively high water temperature (low-density) flowed into the upper layer of the reservoir, and the Bukhangang tributary with low water temperature (high-density) mainly affected the lower layer of the reservoir. This is because the density currents were formed due to the difference in the water temperature of the tributaries. The findings of this study may be used for constructing high-frequency monitoring and quantitative data analyses of reservoirs.

The Behavior and Circulation of Density Current in a Small Reservoir (소규모 저수지에서 밀도류의 거동 및 순환)

  • Yoon, Tae Hoon;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.27-37
    • /
    • 1991
  • The behavior of a negative buoyant flow flowing into a small reservoir is analysed by experiments and dimensional analysis. The nondimensional plunge point, head velocity, head travel distance and the dilution of density current are dependent on the inflow densimetric Froude number, Fre. The thickness of density current, flow pattern and density difference are different from two cases as follows; before the front of head arrive at the downstream end and after. Before the arrival, the thickness of density current is dependent on Fre and after the arrival, time and Fre. It was found that they can be expressed as power laws.

  • PDF

Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2 (CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의)

  • Chung, Se-Woong;Oh, Jung-Kuk;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.655-664
    • /
    • 2005
  • A real-time monitoring and modeling system (RTMMS) for rainfall-induced turbidity flow, which is one of the major obstacles for sustainable use of reservoir water resources, is under development. As a prediction model for the RTMMS, a laterally integrated two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 was tested by simulating the temperature stratification, density flow regimes, and temporal and spatial distributions of turbidity in a reservoir. The inflow water temperature and turbidity measured every hour during the flood season of 2004 were used as the boundary conditions. The monitoring data showed that inflow water temperature drop by 5 to $10^{\circ}C$ during rainfall events in summer, and consequently resulted in the development of density flow regimes such as plunge flow and interflow in the reservoir. The model showed relatively satisfactory performance in replicating the water temperature profiles and turbidity distributions, although considerable discrepancies were partially detected between observed and simulated results. The model was either very efficient in computation as the CPU run time to simulate the whole flood season took only 4 minutes with a Pentium 4(CPU 2.0GHz) desktop computer, which is essentially requited for real-time modeling of turbidity plume.

Longitudinal and Vertical Variations of Long-term Water Quality along with Annual Patterns in Daecheong Reservoir

  • Lee, Sang-Jae;Shin, Jae-Ki;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.199-211
    • /
    • 2010
  • The objectives for this study were to evaluate spatial and temporal characteristics of water quality, based on long-term water quality monitoring data during 1993~2008. We found that physico-chemical and ecological conditions in the Daecheong Reservoir (DR) were modified by the construction of upper dam (i.e., Yongdam Reservoir). total phosphorus (TP), Secchi depth (SD), and chlorophyll-a (CHL) in the DR showed significant longitudinal decreases along the headwater-to-the downlake, indicating a large spatial variation, and this gradient was more intensified during the high-flow season (monsoon). Nutrient-rich water containing high nitrogen and phosphorus in the monsoon season (July~August) passed through the reservoir as a density current in the metalimnetic depth, and also high suspended solids increased in the metalimnetic depth, especially during the monsoon. According to the deviation analysis of Trophic State Index (TSI), >50% of TSI (CHL)-TSI (SD) and TSI (CHL)-TSI (TP) values were negatives, so that inorganic suspended solids (non-votatile solids) influenced the underwater light regime against phytoplankton growth. Also, ratios of CHL:TP after the dam construction evidently increased, compared to the values before the upper dam constructions, indicating a greater yield of phytoplankton in the unit phosphorus. Overall data showed that ecological and functional changes in Daecheong Reservoir occurred after the construction of upper dam (Yongdam Reservoir).

Behavior of Two Dimensional Density Flow into a Reservoir with Sloping Bottom (경사정지수역으로 유입되는 2차원 밀도류의 거동)

  • 윤태훈;전시영
    • Water for future
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 1987
  • The behavior of negative buoyant flow into a reservoir with sloping bottom is analysed by numerical solution technique of the governing equations composed of continuty, momentum and constituent transport equation. The stable plunge point and maximum travel distance are found to be dependent on the bottom slope of reservoir as well as inflow densimetric Froude number, $Fr_e$. They are also related closely to a vortex formed just downstream from the plunge point and above the underflow. The plunge depth was shown to be a function of th bottom slope and $Fr_e$. The plunge depths obtained in this numerical study agree relatively well with published data and theoretical studies, and its predictive equation is derived.

  • PDF