• 제목/요약/키워드: Reservoir density flow

검색결과 44건 처리시간 0.02초

실시간 저수지 탁수 감시 및 예측 모의 (A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir)

  • 정세웅;고익환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링 (Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes)

  • 정세웅;이흥수;정용락
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

팔당호 수질의 연직분포에 대한 밀도류 영향 평가 (Evaluating Effect of Density Flow from Upstream on Vertical Distribution of Water Quality at the Paldang Reservoir)

  • 공동수
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.557-566
    • /
    • 2019
  • Paldang is a river reservoir in the Midwest of Korea, which is a drinking water source for the metropolitan area. Since the Paldang Reservoir is shallow, and has a short hydraulic residence time, its water quality is directly impacted by two incoming rivers, the north Han River (NHR) and the south Han River (SHR). The NHR has different seasonal patterns of water temperature from the SHR because the NHR is greatly impacted by the discharge water from upstream dams. The electrical conductivity (EC) and other material concentrations of the SHR are usually higher than those of the NHR because its basin is limestone-based. The difference in water temperature in the two rivers causes density flow, and the distribution of the EC within the reservoir can be an indicator for monitoring density flow. From the vertical gradient of the EC at the dam site, from spring to fall, it was confirmed that the SHR flowed into the upper layer, and the NHR flowed into the lower layer, and vice versa at other times. The relative difference (RD) of the EC between the upper layer and the lower layer at the dam site was used as an indicator for density flow. The RD of the EC showed a very significant correlation with the RD of total organic carbon (r = 0.70, p < 0.001) and the RD of total nitrogen (r = 0.58, p < 0.01). This relationship is based on the assumption that the difference in electrical conductivity and water quality between the SHR and the NHR is constant. However, in many cases this assumption is inconsistent. Thus, further study is needed on more suitable indicators to evaluate the impact of density flow on water quality.

Drifter를 이용한 저수지 수리거동 조사 (용담댐을 중심으로) (Observation of Reservoir Current Using Drifter (The Case Study of Yongdam Reservoir))

  • 이요상;고덕구;채효석;한경민
    • 생태와환경
    • /
    • 제45권2호
    • /
    • pp.200-209
    • /
    • 2012
  • The current of the water body is very important information for the water quality management on reservoirs. It is applied to hydraulics and water quality model for simulation. In this regard, the current characteristic of water body is the basic information that can be used to predict various conditions. However, it is very slow flowing and is affected by the reservoir operations and external factors. As such, an accurate measurement of the current is a difficult problem. In order to measure the water current, we constructed a drifter. According to the result of flow survey at Yongdam reservoir, 5m and 10 m depth layer flow was investigated from the upstream to the downstream, during a flood period. Maximum flow rate of 5 m depth is 13.8 cm $sec^{-1}$ and 10 m depth shows 4 cm $sec^{-1}$, respectively. But 2m depth shows a backward flow and maximum flow rate is 4 cm $sec^{-1}$. Density currents flow plays the role of back flow in reservoirs. Flow velocity in the reservoir was measured in the range of 1~2 cm $sec^{-1}$, at normal flow season, and the flow direction were different for each survey. This phenomenon occurs because the reservoir volume is very large, compared to the inflow and outflow volume.

고빈도 수온 자료를 이용한 팔당호의 성층과 흐름 변화 분석 (Analyzing Flow Variation and Stratification of Paldang Reservoir Using High-frequency W ater Temperature Data)

  • 류인구;이보미;조용철;최황정;신동석;김상훈;유순주
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.392-404
    • /
    • 2020
  • The focus of this study was to quantify the thermal stratification and analyze the relationship between the stratification structure and the tributaries to understand flow variations in the Paldang Reservoir. The vertical distribution of the temperature and density gradients, and the depth and thickness of the thermocline were quantitatively calculated using a lake physics tool (rLakeAnalyzer) and high-frequency monitoring data. Based on a density gradient of 0.2 kg/㎥/m, the thermocline was formed from mid-May to early-September 2019 and the other periods were weakly stratified or mixed. The thickness of the thermocline was developed until 4.7 m and the depth of the thermocline was formed at a depth of 3 - 6 m at the front of the Paldang Reservoir. During the formation of the thermocline, the Namhangang and Gyeongancheon tributaries with relatively high water temperature (low-density) flowed into the upper layer of the reservoir, and the Bukhangang tributary with low water temperature (high-density) mainly affected the lower layer of the reservoir. This is because the density currents were formed due to the difference in the water temperature of the tributaries. The findings of this study may be used for constructing high-frequency monitoring and quantitative data analyses of reservoirs.

소규모 저수지에서 밀도류의 거동 및 순환 (The Behavior and Circulation of Density Current in a Small Reservoir)

  • 윤태훈;한운우
    • 대한토목학회논문집
    • /
    • 제11권2호
    • /
    • pp.27-37
    • /
    • 1991
  • 음부력을 갖는 유체가 소규모 저수지로 유입되어 일어나는 밀도류의 거동 및 순환이 차원해석과 수리실험을 이용하여 해석된다. 무차원침강점 및 밀도류전면속도, 밀도류전면이동거리, 머리 뒤의 밀도층내회석 등은 유입밀도후르드수, Fre의 영향을 받으며 밀도층의 두께, 흐름양상 및 저수지내 밀도의 변화는 밀도류전면이 하류단에 도달하여 반사되기 전과 후의 양상이 현저하게 다르다. 밀도층의 두께는 전자의 경우에는 Fre, 후자의 경우는 시간과 Fre의 영향을 받으며 이들은 지수식으로 표현할 수 있다.

  • PDF

CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의 (Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2)

  • 정세웅;오정국;고익환
    • 한국수자원학회논문집
    • /
    • 제38권8호
    • /
    • pp.655-664
    • /
    • 2005
  • 저수지를 통한 수자윈의 지속적 확보와 이용에 걸림돌이 되고 있는 탁수의 장기발생문제를 기술적으로 해결하고자 실시간 탁수 감시와 예측시스템(RTMMS)을 구축 중이며, 2004년 홍수기 동안 대청호를 대상으로 유입하는 탁수의 수리 및 수질특성을 조사하고 2차원 횡방향 평균 수리 및 수질모형인 CE-QUAL-W2(W2)를 적용하여 탁수의 밀도류 거동과 시${\cdot}$공간적 분포를 예측하고 실측값과 비교하여 모형의 적용가능성을 평가하였다. 강우사상 동안 하천 수온은 $5{\sim}10^{\circ}C$ 정도 하강하였으며 탁수가 저수지내에서 밀도류를 형성하는 원인으로 작용했다. 적용된 W2모형은 수온의 성층구조 변화와 탁수의 침강점, 도달시간, 중층밀도류 두께 등 탁수의 거동특성을 비교적 잘 모의하였다. 그러나 국부적으로 탁수가 위치한 중층과 탁수 유입 전에 형성되었던 전이층에서 수온과 탁도의 모의값과 실측값이 유의할 만한 오차를 보였다. 펜티엄급 PC(CPU 2.0GHz)로 홍수기 전체기간 모의에 소요된 시간은 약 4분으로써 모형은 계산의 효율성 측면에서 실시간 모의에 적합한 것으로 평가된다.

Longitudinal and Vertical Variations of Long-term Water Quality along with Annual Patterns in Daecheong Reservoir

  • Lee, Sang-Jae;Shin, Jae-Ki;An, Kwang-Guk
    • 생태와환경
    • /
    • 제43권2호
    • /
    • pp.199-211
    • /
    • 2010
  • The objectives for this study were to evaluate spatial and temporal characteristics of water quality, based on long-term water quality monitoring data during 1993~2008. We found that physico-chemical and ecological conditions in the Daecheong Reservoir (DR) were modified by the construction of upper dam (i.e., Yongdam Reservoir). total phosphorus (TP), Secchi depth (SD), and chlorophyll-a (CHL) in the DR showed significant longitudinal decreases along the headwater-to-the downlake, indicating a large spatial variation, and this gradient was more intensified during the high-flow season (monsoon). Nutrient-rich water containing high nitrogen and phosphorus in the monsoon season (July~August) passed through the reservoir as a density current in the metalimnetic depth, and also high suspended solids increased in the metalimnetic depth, especially during the monsoon. According to the deviation analysis of Trophic State Index (TSI), >50% of TSI (CHL)-TSI (SD) and TSI (CHL)-TSI (TP) values were negatives, so that inorganic suspended solids (non-votatile solids) influenced the underwater light regime against phytoplankton growth. Also, ratios of CHL:TP after the dam construction evidently increased, compared to the values before the upper dam constructions, indicating a greater yield of phytoplankton in the unit phosphorus. Overall data showed that ecological and functional changes in Daecheong Reservoir occurred after the construction of upper dam (Yongdam Reservoir).

경사정지수역으로 유입되는 2차원 밀도류의 거동 (Behavior of Two Dimensional Density Flow into a Reservoir with Sloping Bottom)

  • 윤태훈;전시영
    • 물과 미래
    • /
    • 제20권3호
    • /
    • pp.237-245
    • /
    • 1987
  • 경사정지수역으로 유입되는 밀도류의 거동이 흐름의 지배방정식인 연속방정식 운동량보존식 및 추적물수송식에 의하여 수치적으로 해석된다. 최대여행거리와 안정 plunge point는 바닥경사와 유입밀도 Froude 수 $Fr_e$에 지배를 받는다. 또한 그들은 바닥밀도류의 상부나 plunge point의 하류에 형성된 와와 밀접한 관계가 있다. Plunge depth는 바닥경사와 $Fr_e$의 함수이고, 본 수치실험에서 얻은 plunge depth는 발표된 실험자료나 해석해와 비교적 잘 맞았으며 이에 관한 예측식이 유도되었다.

  • PDF