• Title/Summary/Keyword: Reservoir Bathymetry

Search Result 6, Processing Time 0.016 seconds

Analysis of the Effects of Bathymetry Data on Hydraulic Results - Daecheong Reservoir - (저수지 모델의 지형정보 엽력자료가 수리결과에 미치는 영향 분석 - 대청호를 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.229-234
    • /
    • 2009
  • A lot of research on the application of GIS has been conducted in the field of water quality management. The function of a geometric data acquisition for reservoir and river models, however, is not enough to satisfy multiuser' convenience. CE-QUAL-W2 is a two-dimensional(2D) longitudinal/vertical hydrodynamic and water quality model for surface water bodies, modeling eutrophication processes such as temperature-nutrient-algae and sediment relationships. The purpose of this study is to analyzing which bathymetry information affects hydraulic results. There are consisted of three scenarios under consideration. The first scenario takes into account only tribatary type data such as Heoin and Okchen river. The second scenario, Heoin river constructs to tributary and Okchen river constructs by branch. Last scenario constructs Heoin and Okchen river by branch. The RMSE error results for the first, second and third scenarios are 0.61, 0.36 and 0.28 respectively.

Research on Reservoir Bathymetry using USV (수상 드론을 활용한 저수지 수심측량에 관한 연구)

  • Chang-Bong Kim;Young-Joo Kim;Dong-Chul Shin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • In this study, a USV(Unmanned Surface Vehicle) equipped with high-accuracy DGPS(Differential GPS) and single-beam echo sounder was developed. The depth of the reservoir was measured using a USV and a GCS(Ground Control System). A 3D mapping drawing was created using the commercial software ReefMaster. By using USV, the accuracy and efficiency of work was improved. Depth surveying, which was difficult with human resources, is performed using automatic navigation and the volume of the reservoir was calculated. Using 3D mapping drawing, we were able to conduct a detailed investigation of reservoir dredging and ecological environment. It is also expected to be effective in identifying environmental issues.

Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements (ADCP 다중빔 수심계측자료의 위상학적 보정 알고리즘 개발)

  • Kim, Dong-Su;Yang, Sung-Kee;Kim, Soo-Jeong;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.543-554
    • /
    • 2013
  • Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphological representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Jeju Island to validate themselves applicability.

Hydroacoustic Application of Bathymetry and Geological Survey for Efficient Reservoir Management (효율적인 저수지 관리를 위한 정밀 수심측량 및 지층탐사에 관한 연구)

  • Yun, Hong-Sik;Cho, Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.209-217
    • /
    • 2011
  • This study incorporate hydroacoustic sampling for bathymetry and sediment survey in Won Cheon reservoir, Suwon city, Korea. Bathymetric and sedimentation surveys were conducted using a echo sounder system and subbottom profiler in the reservoirs. Data were collected using echo sounder systems and subbottom profiler linked to a GPS, to maximize data accuracy and vessel use, and geo-referenced using a DGPS enabling the acoustic data to be used in a GIS. Echo sounder and subbottom survey data were merged within geographic information system(GIS) software to provide detailed visualization and analyses of current depths, pre-impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, and water storage capacity. These data and analyses are, necessary for development of long term management plans for these reservoirs and their watersheds.

The Construction of 3D Spatial Imagery Information of Dam reservoir using LiDAR and Multi Beam Echo Sounder (LiDAR와 MBES를 이용한 댐 저수지 3차원 공간영상정보 구축)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • Recently, the construction of three dimensional spatial information of Dam reservoir area is very important part in Dam management work such as sediment survey, but it is difficult to acquire detailed terrain data because totalstation and single beam echo sounder are applied to terrain survey. This study presented method to construct detailed terrain data of Dam reservoir area using LiDAR and multi beam echo sounder. First, LiDAR survey was carried out in land zone and calibration process was applied by ground control point. And also the DEM of land zone was constructed by using algorithm, which eliminated building and vegetation class. As the result of validation of LiDAR DEM using GPS terrain survey, it was possible to construct three dimensional terrain data that was satisfied with the tolerance error of LiDAR, which was the standard error of LiDAR DEM showed as 0.108m. Also multi beam echo sounder was applied to the survey of water zone and it could construct spatial information that was satisfied with bathymetry surveying tolerance error of International Hydrographic Organization by validation with terrain survey data. And LiDAR and multi beam echo sounder data were integrated and it was possible to construct three dimensional spatial imagery information that can be applied to Dam management work such as the estimation of sediment amounts or the monitoring of terrain change by linking with high resolution orthophoto.