• 제목/요약/키워드: Research trajectory

검색결과 803건 처리시간 0.03초

7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘 (Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction)

  • 김영렬;송재복
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

A Study of Trajectory Simulation of Master Arm

  • Moon, Jin-Soo
    • 조명전기설비학회논문지
    • /
    • 제22권7호
    • /
    • pp.1-6
    • /
    • 2008
  • In industrial fields, human works are being replaced by robots. However, as the use of robots is limited in the process industry where they are operated fixedly, humanoid robots with wide applications need to be developed. Currently a great deal of research is being conducted on humanoid robots with the object of replacing humans in the workplace. However, because of the lack of relevant hardware and difficulty in mechanical parts, only very simple and limited progress is being made. In an effort to overcome these limitations, the purpose of the present study is to develop a kinematical mechanism and a controller. To this end, master arms with 3 degrees-of-freedom for the shoulders and the arms were composed which were able to reproduce human-like motions by simulating the characteristics of joint variables and the trajectory of the end-effector.

Unknown Parameter Identifier Design of Discrete-Time DC Servo Motor Using Artificial Neural Networks

  • Bae, Dong-Seog;Lee, Jang-Myung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.207-213
    • /
    • 2000
  • This paper introduces a high-performance speed control system based on artificial neural networks(ANN) to estimate unknown parameters of a DC servo motor. The goal of this research is to keep the rotor speed of the DC servo motor to follow an arbitrary selected trajectory. In detail, the aim is to obtain accurate trajectory control of the speed, specially when the motor and load parameters are unknown. By using an artificial neural network, we can acquire unknown nonlinear dynamics of the motor and the load. A trained neural network identifier combined with a reference model can be used to achieve the trajectory control. The performance of the identification and the control algorithm are evaluated through the simulation and experiment of nonlinear dynamics of the motor and the load using a typical DC servo motor model.

  • PDF

Off-hooked 트레일러 시스템의 궤적 추종 (Path following of the passive off-hooked trailer system)

  • 이재형;박명국;정우진;김문상;송재복
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1831-1839
    • /
    • 2003
  • This paper deals with design and control of passive multiple trailer systems fer practical applications. Due to cost and complexity of trailer mechanism, passive systems are preferred to active systems in this research. The control objective is to minimize trajectory tracking errors of passive multiple trailers. Three types of passive trailer systems-direct-hooked, three-point, and off-hooked- are discussed in this paper. Trajectory tracking performance and stability issues under constant velocity motion are carried out for three types. Various simulations and experiments have been also performed for these three types. It is shown that the proposed off-hooked trailer system produces better tracking performance than the other types.

뉴로-퍼지 네트워크에 의한 유도전동기 궤적의 학습에 관한 연구 (A Study on the Learning Method for Induction Motor Trajectory using a Neuro-Fuzzy Networks)

  • 양승호;김세찬;김덕헌;유동욱;원충연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.331-333
    • /
    • 1994
  • A learning method for induction motor trajectory using neuro-fuzzy networks (NFN) based on fusion of fuzzy logic theory and neural networks is proposed. The premise and consequent parameters of the NFN affecting the controllers performances are modified during the learning stages by the proposed learning method to implement an optimal controller only with pre-determined target trajectory and the least amount of knowledge about an induction motor. The induction motor position control system is simulated to verify the effectiveness of the learned NF controller(NFC). The simulation results shows that the proposed learning method has good dynamic performance and small steady state error.

  • PDF

Tourist Transition Model among Tourist Attractions based on GPS Trajectory

  • Kasahara, Hidekazu;Watabe, Takeshi;Iiyama, Masaaki
    • Journal of Smart Tourism
    • /
    • 제1권2호
    • /
    • pp.19-25
    • /
    • 2021
  • Before COVID-19, tourist destinations have experienced problems with congestion of both famous tourist attractions and public transportation. Over-tourism is not an issue at this time, but it is likely to rekindle after the COVID-19 pandemic ends. One method of mitigating over-tourism is to estimate tourist behavior using a tourist transition model and consequently adjust public transportation operations. In this study, we propose a construction method for a model of tourist transitions among tourist attractions based on tourist GPS trajectory data. We construct tourist transition models using actual trajectory data for tourists staying in the vicinity of Kyoto City. The results verify the model performance.

On the ZMP of biped robot (Visualization of ZMP)

  • Sung, Sang-Hak;Youm, Young-Il;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.137.3-137
    • /
    • 2001
  • Many locomotion purpose robots are being built and are under research such as mobile manipulator and biped humanoid robot, etc. Dynamic posture stability of these robots is based on the ZMP point. For getting stable ZMP trajectory, some method has been developed but is too complex and time consuming which leads to inability in generating on-line ZMP trajectory. In this paper, we give a qualitative study about behavior of ZMP in biped walking robot through visualization. This result gives intuitive understanding about behavior of ZMP under various robot state.

  • PDF

공기괴 역궤적 분석을 위한 FLEXPART Lagrangian Particle Dispersion 모델의 최적화 및 자동화 (Parameter Optimization and Automation of the FLEXPART Lagrangian Particle Dispersion Model for Atmospheric Back-trajectory Analysis)

  • 김주일;박선영;박미경;리선란;김재연;조춘옥;김지윤;김경렬
    • 대기
    • /
    • 제23권1호
    • /
    • pp.93-102
    • /
    • 2013
  • Atmospheric transport pathway of an air mass is an important constraint controlling the chemical properties of the air mass observed at a designated location. Such information could be utilized for understanding observed temporal variabilities in atmospheric concentrations of long-lived chemical compounds, of which sinks and/or sources are related particularly with natural and/or anthropogenic processes in the surface, and as well as for performing inversions to constrain the fluxes of such compounds. The Lagrangian particle dispersion model FLEXPART provides a useful tool for estimating detailed particle dispersion during atmospheric transport, a significant improvement over traditional "single-line" trajectory models that have been widely used. However, those without a modeling background seeking to create simple back-trajectory maps may find it challenging to optimize FLEXPART for their needs. In this study, we explain how to set up, operate, and optimize FLEXPART for back-trajectory analysis, and also provide automatization programs based on the open-source R language. Discussions include setting up an "AVAILABLE" file (directory of input meteorological fields stored on the computer), creating C-shell scripts for initiating FLEXPART runs and storing the output in directories designated by date, as wells as processing the FLEXPART output to create figures for a back-trajectory "footprint" (potential emission sensitivity within the boundary layer). Step by step instructions are explained for an example case of calculating back trajectories derived for Anmyeon-do, Korea for January 2011. One application is also demonstrated in interpreting observed variabilities in atmospheric $CO_2$ concentration at Anmyeon-do during this period. Back-trajectory modeling information introduced in this study should facilitate the creation and automation of most common back-trajectory calculation needs in atmospheric research.

도로 네트워크 환경에서 이동 객체 위치 예측을 위한 효율적인 인덱싱 기법 (An Efficient Indexing Technique for Location Prediction of Moving Objects in the Road Network Environment)

  • 홍동숙;김동오;이강준;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2007
  • 현재 무선 통신 기술과 위치 정보 기술의 발달은 다양한 위치 기반 서비스(LBS: Location Based Services)의 발전을 가져왔으며, 위치 기반 서비스에서 이동 객체의 미래 위치를 빠르게 예측하기 위한 미래 인덱스의 필요성이 높아지고 있다. 미래 인덱스와 관련한 대표적인 연구로써 도로 네트워크 환경에서 이동 객체의 과거 궤적 정보를 이용하여 신뢰성을 높인 확률 궤적 예측 기법이 연구되었다. 그러나, 이 기법은 장기간 미래 질의 시 방대한 미래 궤적 탐색 부하로 인해 예측 성능이 떨어지게 되며, 이 때문에 발생하는 빈번한 미래 궤적 갱신으로 인해 인덱스 유지비용이 매우 높아지게 된다. 따라서, 본 논문에서는 효율적인 장기간 미래 위치 예측을 위한 셀 기반의 미래 인덱싱 기법인 PCT-Tree(Probability Cell Trajectory-Tree)를 제시한다. PCT-Tree는 방대한 과거 궤적의 확률을 셀 단위로 재구성함으로써 인덱스 크기를 줄이고, 장기간 미래 질의의 예측 성능을 개선시킨다. 또한, 과거 궤적 정보를 이용하여 신뢰성있는 미래 궤적을 예측함으로써 미래 궤적 예측 오류에 따르는 통신비용과 미래 궤적 갱신으로 인한 인덱스 재구성 비용을 최소화 할 수 있다. 실험을 통해 도로 네트워크 환경에서 PCT-Tree가 기존 인덱싱 기법보다 장기간 미래 질의 성능이 우수함을 입증하였다.

  • PDF

Repetitive Periodic Motion Planning and Directional Drag Optimization of Underwater Articulated Robotic Arms

  • Jun Bong-Huan;Lee Jihong;Lee Pan-Mook
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.42-52
    • /
    • 2006
  • In order to utilize hydrodynamic drag force on articulated robots moving in an underwater environment, an optimum motion planning procedure is proposed. The drag force acting on cylindrical underwater arms is modeled and a directional drag measure is defined as a quantitative measure of reaction force in a specific direction in a workspace. A repetitive trajectory planning method is formulated from the general point-to-point trajectory planning method. In order to globally optimize the parameters of repetitive trajectories under inequality constraints, a 2-level optimization scheme is proposed, which adopts the genetic algorithm (GA) as the 1st level optimization and sequential quadratic programming (SQP) as the 2nd level optimization. To verify the validity of the proposed method, optimization examples of periodic motion planning with the simple two-link planner robot are also presented in this paper.