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Unknown Parameter Identifier Design of Discrete-Time
DC Servo Motor Using Artificial Neural Networks

Dong-Seog Bae and Jang-Myung Lee

Abstract: This paper introduces a high-performance speed control system based on artificial neural networks(ANN) to estimate
unknown parameters of a DC servo motor. The goal of this research is to keep the rotor speed of the DC servo motor to
follow an arbitrary selected trajectory. In detail, the aim is to obtain accurate trajectory control of the speed, specially when
the motor and load parameters are unknown. By using an artificial neural network, we can acquire unknown nonlinear dynamics
of the motor and the load. A trained neural network identifier combined with a reference model can be used to achieve the
trajectory control. The performance of the identification and the control algorithm are evaluated through the simulation and
experiment of nonlinear dynamics of the motor and the load using a typical DC servo motor model.
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1. Introduction

In a high performance electric driving system, the
position of a rotor or the speed of a rotor follows the
predetermined trajectory over an entire region. Such a
high-performance driving system is essential where precise
motion is required such as in the areas of robotics,
actuation, and guided manipulation. A high-speed controller
is indispensable in a driving system. The aim of a
high-speed controller is to adjust terminal voltages so that
the gpeed of a rotor can pursue the given trajectory with
minimum error, and this can be accomplished by supplying
suitable control signals from a general converter.

In an electric driving system, one of the important
problems of traditional tracking controller is that unknown
load parameters which have wide operating point cannot be
acquired. This coincides with the problems of each
controllers[1]-[4]. There are many techniques to overcome
such problems. For example adaptive controller overcomes
them by identifying entire behavior of a DC servo motor
using the linear parametricARMAX) over given time
intervals. But, generally, a load torque is a nonlinear
function of the combination of variable numbers such as the
position or the speed of a rotor. Therefore identifying the
whole nonlinear system through a linearized model around
the widely varying operating point with a fast-switching
frequency can cause an error inducing unstable or inaccurate
performance|[S5].

The application of neural network for training non-linear
function is well-known[6][7]. Neural networks are trained to
emulate non-linear plant dynamics by implementing sets of
input-output pattern properly. If system dynamics is
identified by ANN, traditional control techniques can be
applied in order to reach their particular aim. One specific
technique the indirect model reference adaptive
control(MRAC)[6](7], is useful for the application of
trajectory control. In this paper, we propose a method on
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control topology based on MRAC techniques for trajectory
control and identification of DC servo motor based on
ANN. To have no previous information the load dynamics
is to have no previous information on parameters of DC
servo motor. We limited experiment to the identification
process having time-invariant model structure because
training of ANN is performed through static
back-propagation. In the case of time-varying system,
recurrent network method[9][10] can be used.  This paper
consists of the following sections: In section 2, dynamics of
DC servo motor and necessary functions for ANN training
are described. In section 3, simple introduction for ANN
simulator and how ANN emulates function of DC servo
motor are presented. In section 4, the performance of
identification of DC servo motor is measured. In section 5,
the controller topology about identified model is introduced
and experiments are presented. In section 6, results and
ideas on future research are presented.

II. DC servo motor model

DC servo motor provides advanced algorithm for stable
electrical drives and the omni-directional characteristics of
linearity. And, as introduced in references[1-3], it is an ideal
factor for trajectory control. In the point of control system,
DC servo motor can be considered as SISO plant.
Therefore, complications related to multi-input system are
discarded.
1. Motor dynamics

Dynamics of DC servo motor is calculated by using the
following two equations :

Kaw,(t) == R,i(t) — L.[di, (0)/dt] + V(©) (D)
Ki,(t) = J[dwy(t)/dt] + Do, (t) + TL(t) ()
where,

wp(t) : rotor angular velocity, rad/s
V(t) : input voltage, V
i,(t) : armature current, A

To(t) : load torque, Nm
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J : rotor inertia, Nm2

K : torque & back emf constant, NmA-1
D : damping constant, Nms

R, : armature resistor, £

L : armature inductance, H.

i

Load torque, T (t), can be expressed as function of

a rotor angular velocity as follows:
TLt)= Ww,). 3

Function ¥(w,) is dependent on load and accurate

function is assumed to be unknown.
2. Discrete-time DC servo motor model

In order to acquire training data of ANN and apply
control algorithm, discrete time DC servo motor model is
necessary. Therefore, we define the nonlinear model is
defined as follows :

T (t) = pw(t) [sign (w, (t))] @

where, p is constant. In equation (4), the direction of load
torque is always opposite to the direction of rotation. The
reason for choosing this special function is that this function
presents general characteristics on driving propeller and load
shaped like a pan. But the choice of load torque is
completely arbitrary and this function doesn't influence the
proposed control algorithm.

Discrete-time model can be established by substituting all
continuous differential as finite difference after combining
equations (1),(2),(4). State-space representation is as follows:

w(k+1)= ew,(k)+ fw,(k—1)
+ AAsign(a, (k)]wi(k) (5)
+ o sign(a, (k)]wi(k — 1)+ ¢V (k)

where, @, 7, § are constants based on motor parameters
J, k, D, R, L, and sampling time T ,and §, g are
functions of . The value k denotes the kth time step.

The value of DC motor parameter with name plate ratings
of 1HP, 220[V], 1100[rpm] are as follows:

0.068 Kgm®
3.475 NmA™!
7.56 2

0.055 H
0.03475 Nms
0.0039 Nms?
40 ms.

9

HR O R
T T T T

III. ANN and back propagation learning
The structure of typical 3-layer feed-forward ANN is
shown in Fig. 1. It consists of input-layer, output-layer and
two hidden layers and a set of node is arranged in these
layers. Active signals are converted into weak or amplified
signals and transferred to next layers through link.

# of neurons Y(3) weights layer #

N3 3
W(3)

N2 2
W(2)

N1 1
W(1)

No 0

Fig. 1. Topology of a 3 layer feedforward ANN.

1. The structure of multi-layer feed-forward network
Each ANN nodes consisting of H layer is expressed by
the following two equations:

w(h+1) =2wﬁ(h+1)Yj(h)+Hi(h+l) ©)

Yi(h+1) = f[uth+1)] (N
where,
wiij(th+1) : the weight between i neuron of h+l
layer and j™ neuron of h layer
0(h+1) : the threshold of i neuron of h+]1%"
layer
u;(h+1) input for i™ neuron in the layer of
h+1%
Y;(h) : input for i the action of neuron in the

layer of A%
f[ -] : the active function of sigmoid
Ny : the number of neuron in the layer of A4*
i,j,h is 1<i<Ny,,, 1<j<N; & 0<h<H-1.
2. Back-Propagation Learning
ANN imitates the functions by implementing the set on
the patterns of input-output function. The back-propagation
learning method minimizes the difference between the
desired output and the real output for all the given patterns

to adjust the weight in the link and the threshold in the
node. The reason for this is that Pth training pattern

(P=1,...... P) minimizes the following energy function
for all the weight and threshold.
E,=(1/2) 2} (T;—Y.(H))* ®)

Y (H) corresponds to the action of i neuron in output
layer H. Also, T; is desired value. Update value

corresponding to weight value is computed by gradient
descent technique. '

w §Ch) = wii™(h) + 93E,/ dwy( ) + v wi (1) (9)

The quantity for dE, / dw(h) is calculated by the
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following equation:
oE, / aw;(h) = &(h)ffu;(h)] - Y;(h—1)  (10)
&(h) = 258(h+ Dffuth+1)1 - with+1) (1

where, &(H)=—(T;—Y;(H)).

Generally, the above algorithm is known for the error
back-propagation algorithm. The constant 7 is the learning
step and » is momentum gain. Aw;(h) presents the
variation of weight for the repetition beforehand. The
weight is improved for all P pattern and the learning
process desires a lot of modification. The enough learning
is accomplished when the sum of the total error function
that is included in the collection of all the P training pattern
is decreased under the threshold ¢ that is selected
beforehand. Namely,

Etotzﬂ: ZpEp < €,

More details about back-propagation algorithm are
mentioned in reference[6]. In designing and training ANN
to imitate function, the only fixed parameters are input and
output for ANN. These are is based on input-output
variables of function, and two hidden layers learn arbitrary
nonlinear factor. But the number of hidden neurons and

p=1,....P. (12)

parameters 7, o, € and P are independent of statistical
learning, not supported by settled standard and the selection
is normally based on the experience, The final object is to
find the combination of parameters yielding whole errors in
the extent of reasonable learning numbers.

IV. ANN for system identification and control

Fig. 2 shows the basic concept of identification of DC
servo motor and control. This is similar to indirect model
reference adaptive control[5][7], where, DC servo motor is
first identified by the combination of ANN input and output
variables. Weights from trained ANN identifier are used to
calculate terminal voltage and this will derive the DC servo

motor velocity w,(k) to move asymptotically toward

REFERENCE o, (k)
MODEL
l &.(k)
ANN .
CONTROLLER IDENTIFICATION | -2e=t2
MODEL
fn
d
NONLINEAR | ../
PLANT

Fig. 2. ANN Based identification and control system.

reference model output (k). (k) and (%) of Fig.
2 are defined as discrimination and tracking error,
respectively. The aim of discrimination is to minimize the
error

[ek)]? V kTe[0,t,] .

Or, we minimize [e{A)]? in kT < [0, ¢7]. This is
the window in time [(,t¢]. During this period, ANN is
learning, it finishes when the value of tracking error meet
minimum value that we want to and then, Non linear plant
is identified.

Here, the control strategy is to calculate the most optimal
terminal voltage V(k), and this minimizes tracking error.
The behavior of desired DC servo motor is described
through the adjacent reference model. And the bounded
control sequence r(K) to desired velocity trajectory

@x(k) can be derived by using the reference model. It is
used as an active signal of control system.

1. Identification of DC servo motor

The characteristics of DC servo motor are identified by
making the set of input and output pattern for ANN and
properly setting the weighting value with error
back-propagation. The intensity of training depends on
degree of complexity of dynamics. When it comes to
training of ANN, one of the work done first is to define the
operation area to input and output variables of ANN. The
researchers confined the operation space as follows to unite
the limit of mechanical and electric hardware agree with
hypothetical scenario

—30.0 < w,(k) < 30.0 rad/s
P oy(k—1D—wy(k) | < 1.0 rad/s
I Vdk)| < 100 [V].

The performance of ANN discrimination is evaluated by
comparing the estimated output and real output of motor to
typical arbitrary excitation signal.

2. Topology
Equation (5) becomes -equation (13).

Vi) =glao,(k+1), w,(k), o,(k—1]. 13)

Here, g[ -] is derived from equation (11} and we

suppose that is unknown.

glo(k+1), 4, (K), @, (k—DI=[(w,(k+1) —aw,(k)
— Bwy(k—1)— 7y [sign(a, (k)]wp*(k) (14)
— &l sign(w, (k)JoXk —1)/&.

ANN learns to imitate g[ -] w, (%), w,(k—1)
w,(k+1), are independent variables of g[ -] and
inputs of ANN. The corresponding desired output
gloy(k+1), w,(k), w,(k—1)] is calculated from
equation (14). This is also equal to V,(k) of equation (13).
Desired output V (k) corresponding to input pattern of
randomly raising [w,(k+1), w,(K), w,(K—1)] is
used for off-line training. Training data comes from
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operation area defined in 4.1.

0, (k-2) .

’ w,(k~-1)

F ANN IZ-

V(K)

A 4

DC @, (k)
MOTOR |

Fig. 3. Structure of the ANN identifier.

Fig. 3 shows a model structure of serial-parallel ANN
discriminator. Z~! is unit time-delay. The estimated
terminal voltage of DC servo motor is derived from
equation (15).

Vilk—1)=Nlw,(k), w, (k—1),
wy(k—2), w, (k—3)] (15)

“represents the estimated voltage, and N[ - ] is

“ ”

@ ~

where,
output to the input

The following statistics describes the simple concept
including training result and ANN Topology:

No. of input : 3

No. of output 1

No. of hidden layer : 1

No. of hidden neuron : 6

No. of training Patterns P : 1500
No. of training Sweep : 5000
Training Step 7 : 0.1
Momentum gain » : 04
Total threshold ¢ of E : 0.01 .

The performance of trained ANN discriminator is
estimated through the excitation of the DC servo motor
model by using the following voltage sequence and
compared with output of equation (15) and V, (k).

V(k)=50sin(27kT/6) +45sin(2zkT/4)
(16)
Y kTe[0,20/ sec].

Here, it is restricted in %27 =[0,20/ sec]. Fig. 4
shows the result. The highest error of estimator is
2.3[V](2.3%) under the highest application voltage 100[V].
In the Topology, for the discrimination model it is very
important not to suppose the capability of using the
parameter of load and DC servo motor. As a result, the
training function is very complex. So, the result of
calculation needed for training ANN is a large value, the
same as in the training statistics.

— Actual
— — Specified

l- 8o =

100[v]

timelsec]

L L n 1 ) L 1 1 18

Fig. 4. Actual and estimated terminal voltages of the
DC servo motor.

V. Experiment of DC servo motor using
learned ANN

1. Trajectory control of DC servo motor

The purpose of this control system is that the velocity of
motor tracks the desired trajectory w,(k) by using DC
servo motor. This is accomplished by making DC servo
motor track the output of chosen reference model. The
following second-order reference model is chosen.

wn(k+1)=0.6w,(k)+0.20,(k—1)+r(k) (A7)

where, r(k) is the bounded input to the reference model.
The coefficients are chosen to assure that the poles are in
the unit circle and that is the response type that can be
accomplished from DC servo motor. The control sequence
r(k) corresponding to desired sequence w,(k) can be
calculated by using equation (17). In section 4, learned
ANN is used for Topology to track input voltage V,(k) of
DC servo motor, and assures that DC servo motor velocity,
w,(k), correctly pursues trajectory. In order to evaluate the
performance of controller the velocity trajectory is
simulated, w,,(k), selecting arbitrarily. Indicated figure
comparison and actual velocity trajectory are as follows :
Because reference model is  stabilized
asymptotically, it can be supposed that tracking error moves
toward “0”, and predict velocity at (K -+ 1)th sampling time
in the equation (18):

selected

Wk +1=0.6w,(k) + 0.2w, + r(k). (18

The result can be feed back to ANN that was learned in
Topology in oder to estimate the control input at Kth
sampling time

Vk)=N[w(k+1), 0,(k), w,(k—1)] (19)
Overall structure and control system for identification
based on ANN is shown in Fig.5. The ability of the model
tracking control is verified through the experiment on two
arbitrarily selected trajectory. As previously described, first
denoting  w,(k), the researchers induced corresponding
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[r(k)]. For the above trajectory, the corresponding [r(k)]
is derived by using equation (18). [r(k)] is applied to

model in Fig. 4 and the matrix oI corresponds to

reference model coefficient[0.6 0.2]. Fig. 6 describes
tracking performance on the same sinusoidal reference
velocity trajectory as indicated in the previous section, while
Fig. 7 compares actual performance on sigmoid velocity
trajectory. Fig. 6 and Fig. 7 show that tracking performance
is better. In addition, suggested algorithm has the advantage
that DC servo motor is entirely independent of the load
parameter. Here, improved performance can be acquired by
learning more of ANN.

Electric drive system must show the superior
characteristics in a noisy environment. Noise is caused by
several reasons, and the main reason is resolution error and
position error for DC servo motor, drift of load parameter
and quantization velocity. High performance operating
controller should be strong enough robust to maintain
accurate tracking performance regardless of the operating
environment. The controller based on ANN has its own
ability to reduce noise. Therefore, the controller will show
the better performance in a noisy operating environment. In
a noisy environment, to inspect the controller performance,
after mixing uniform random variable of +2 rad/sec with
the content in Fig. 7, the velocity is repeatedly measured,

REFERENCE
MODEL
) .ﬁL_._‘(k"z)
RED | N L&D
(h— + Z
£;(k=D) )
N2 - ¥
+
=]
O » H® [ 5e ] ap® |
- MOTOR
T
oC

m

Fig. 5. Overall structure of the controller.
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time[sec]
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Fig. 6. Tracking performance for a sinusoidal
reference trajectory.

I [rad/sec]

—— Actua

20 -—— $Specified

-20
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Fig. 7. Tracking performance for a sigmoid reference.

wy(K) of DC servo motor. Here, the velocity «,(K) is
used as the input of ANN controller. Fig. 8 shows the
tracking performance in environment with noise
continuously generated in Topology. As compared to Fig. 7,
tracking accuracy is continuous under active mode including
noise and a stabilized controller performance is observed.

- [rad/sec]

— Actual

20 -—-- Specified

--20

time[sec]
1 1 1 1 1 1 1 il *8

Fig. 8. Tracking performance for a sigmoid reference
track with measurement noise.

2. The experiments in hardware

Fig. 9 shows the overall structure of controller used in the
experiment. The system is composed of output control
signal in itself by programming in the personal
computer(PC). The purpose is to get a faster and more
accurate control signal by not using micro controller
specifically. The specific structure is as follows: The control
output signal(0V ~ 10V) is made by the 12bit D/A convertor
in the PC, and is converted to bipolar signal of 0[V]~5[V],
-5[V]~0[V] in the level shift circuit, and then, used
absolute circuits which made (-)voltage when the motor is
backward, and (+)voltage when forward.

In the velocity control of motor PWM method is used,
and in the switching of it IGBT, the element of electric
power is used. In addition, in the extraction of rotor speed
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the noise of tacho generator through LPF(Low Pass Filter)
is reduced. and converted into digital voltage through 12-bit
A/D convertor, and then used for feedback signal to rotor
speed. The specifications of DC servo motor and tacho
generator used in experiment are as follows(Table 1):

Table 1. Spec. of motor and tacho generator used in

experiment.
: —
Maximum inpu 40VDC
voltage
Motor Maximum torque 12.5kg - cm
Maximum speed 1,200rpm
Maximum current S3A
Tacho Generator Output 3V/1,000rpm
220v D‘S:u‘;‘::;"'
R T
|

DA
Level it Value Full Bridge
[ comverto )} ghingr S| value Comparator r Motor Drive | ]

¢ zero crossing
A

| A 5k
\ﬂ | Triangle
|

wave
Generator

PC ) FWO/REY
-~ 128t 1
350MHz
Pentium I e
processor
pCI
Nurak-Network o

Controiter

D 3v/1000rpm
|t~ convent LPF Tacho
n Generatar

Fig. 9. Overall structure of experimented control system.
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Fig. 10. Tracking performance of control algorithm
to DC servo motor.

In the experiment, the proposed algorithm in this paper
was applied to DC servo motor to evaluate the performance
of controller. This time, the desired value of rotor speed
was set to sinusoidal signal of 890[rpm], and the sampling
period T was 1.675[msec]. Furthermore the object of 1[kg]
is connected to rotor so that random torque can be
generated in case of variation of load torque. According to
voltage shown by Fig 10, it indicates about 2.2[V]. At Table

1, it is 1000[rpm] under 3[V], therefore, rotor speed of
motor is 890[rpm]. This is rotor speed of motor which we
want to track. At the below graph of Fig. 10, it exists about
0.1[V]. It indicates 25[rpm] of rotor speed. therefore, It
shows that there is only tracking error of 2.8[%] about
890[rpm]. The steady state error in the experiment was
25[rpm](2.8%) [Fig.10]. The algorithm proposed in this
paper produced a superior performance in the identification
of parameters despite the load variation of the motor.

V1. Conclusion

The trajectory control and experiment on unknown
discrete time DC servo motor were performed successfully.
Nonlinear operating characteristics and load of unknown
time-variant discrete time DC servo motor could be found
by ANN, and this result is very important factor in
experiment, so enough learning was required. In order to
acquire better performance of trajectory control of discrete
time DC servo motor velocity, this paper used ANN adding
the concept of model reference adaptive control.
Through the experiment, the tracking performance of the
proposed control algorithm was more superior. Also, the
researchers conducted the experiment in a noisy condition
to study the degree of robust controller. The researchers
suggest future studies on controllers which use intelligent
control algorithm application.
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